Effect of a Concurrent Training Program with and Without Metformin Treatment on Metabolic Markers and Cardiorespiratory Fitness in Individuals with Insulin Resistance: A Retrospective Analysis.
Jairo Azócar-Gallardo, Alex Ojeda-Aravena, Eduardo Báez-San Martín, Tomás Herrera-Valenzuela, Marcelo Tuesta, Luis González-Rojas, Bibiana Calvo-Rico, José Manuel García-García
{"title":"Effect of a Concurrent Training Program with and Without Metformin Treatment on Metabolic Markers and Cardiorespiratory Fitness in Individuals with Insulin Resistance: A Retrospective Analysis.","authors":"Jairo Azócar-Gallardo, Alex Ojeda-Aravena, Eduardo Báez-San Martín, Tomás Herrera-Valenzuela, Marcelo Tuesta, Luis González-Rojas, Bibiana Calvo-Rico, José Manuel García-García","doi":"10.3390/biom14111470","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Type 2 diabetes mellitus is a metabolic disorder characterized by insulin resistance (IR), which is prevalent worldwide and has significant adverse health effects. Metformin is commonly prescribed as a pharmacological treatment. Physical exercise is also recognized as an effective regulator of glycemia, independent of metformin. However, the effects of inter-day concurrent training (CT)-which includes both endurance and resistance exercises-combined with metformin treatment on metabolic markers and cardiorespiratory fitness in individuals with IR remain controversial.</p><p><strong>Objective: </strong>This study aimed to analyze the effects of a 12-week inter-day CT program on metabolic markers and cardiorespiratory fitness in overweight/obese individuals with IR, both with and without metformin treatment. Additionally, inter-individual responses to CT were examined.</p><p><strong>Materials and methods: </strong>Data from the 2022-2023 Obesity Center database were retrospectively analyzed. According to the eligibility criteria, 20 overweight/obese individuals diagnosed with IR participated in a 12-week CT program (three weekly sessions: two endurance and one resistance exercise session). Participants were divided into three groups: the exercise group (E-G: n = 7, 32.86 ± 8.32 years, 85.2 ± 19.67 kg), the exercise-metformin group (E-MG: n = 6, 34.83 ± 12.91 years, 88.13 ± 12.66 kg), and the metformin-only control group (M-G: n = 7, 34.43 ± 13.96 years, 94.23 ± 13.93 kg). The M-G did not perform physical exercise during the 12 weeks but continued pharmacological treatment. Body composition, metabolic markers, and cardiorespiratory fitness were assessed before and after the 12-week CT program.</p><p><strong>Results: </strong>A group-by-time interaction was observed for fasting insulin (F<sub>2,17</sub> = 34.059, <i>p</i> < 0.001, η<sup>2</sup><sub>p</sub> = 0.88), the Homeostatic Model Assessment of Insulin Resistance (HOMA-IR) (F<sub>2,17</sub> = 35.597, <i>p</i> < 0.001, η<sup>2</sup><sub>p</sub> = 0.80), and maximal fat oxidation (MFO) (F<sub>2,17</sub> = 4.541, <i>p</i> = 0.026, η<sup>2</sup><sub>p</sub> = 0.348) following the CT program. The maximal oxygen uptake (VO2<sub>max</sub>) showed significant improvements in the E-G (F = 4.888, <i>p</i> = 0.041, ∆+13.3%). Additionally, the percentage of fat mass (%FM) and body mass (BM) were significantly reduced across all groups (F = 125.244, <i>p</i> < 0.001 and F = 91.130, <i>p</i> < 0.001, respectively). The BM decreased by ∆-9.43% in the E-G (five responders, Rs), ∆+9.21% in the EM-G (5 Rs), and ∆+5.15% in the M-G (3 Rs). The %FM was reduced in the E-G by ∆-22.52% (seven Rs). Fasting insulin and the HOMA-IR significantly improved in both the E-G and EM-G, with fasting insulin showing a ∆-82.1% reduction in the E-G (five Rs) and a ∆-85% reduction in the EM-G (six Rs). Similarly, the HOMA-IR improved by ∆+82.6% in the E-G (three Rs) and by ∆+84.6% in the EM-G (six Rs).</p><p><strong>Conclusions: </strong>The 12-week inter-day concurrent training program, whether combined with metformin or not, was similarly effective in improving metabolic markers in patients with insulin resistance as metformin treatment alone. Both exercise groups demonstrated a significant reduction in insulin sensitivity and an increase in maximal fat oxidation. Meanwhile, exclusive pharmacological treatment with metformin markedly decreased cardiorespiratory fitness, and consequently, fat oxidation.</p>","PeriodicalId":8943,"journal":{"name":"Biomolecules","volume":"14 11","pages":""},"PeriodicalIF":4.8000,"publicationDate":"2024-11-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11592327/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomolecules","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.3390/biom14111470","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Background: Type 2 diabetes mellitus is a metabolic disorder characterized by insulin resistance (IR), which is prevalent worldwide and has significant adverse health effects. Metformin is commonly prescribed as a pharmacological treatment. Physical exercise is also recognized as an effective regulator of glycemia, independent of metformin. However, the effects of inter-day concurrent training (CT)-which includes both endurance and resistance exercises-combined with metformin treatment on metabolic markers and cardiorespiratory fitness in individuals with IR remain controversial.
Objective: This study aimed to analyze the effects of a 12-week inter-day CT program on metabolic markers and cardiorespiratory fitness in overweight/obese individuals with IR, both with and without metformin treatment. Additionally, inter-individual responses to CT were examined.
Materials and methods: Data from the 2022-2023 Obesity Center database were retrospectively analyzed. According to the eligibility criteria, 20 overweight/obese individuals diagnosed with IR participated in a 12-week CT program (three weekly sessions: two endurance and one resistance exercise session). Participants were divided into three groups: the exercise group (E-G: n = 7, 32.86 ± 8.32 years, 85.2 ± 19.67 kg), the exercise-metformin group (E-MG: n = 6, 34.83 ± 12.91 years, 88.13 ± 12.66 kg), and the metformin-only control group (M-G: n = 7, 34.43 ± 13.96 years, 94.23 ± 13.93 kg). The M-G did not perform physical exercise during the 12 weeks but continued pharmacological treatment. Body composition, metabolic markers, and cardiorespiratory fitness were assessed before and after the 12-week CT program.
Results: A group-by-time interaction was observed for fasting insulin (F2,17 = 34.059, p < 0.001, η2p = 0.88), the Homeostatic Model Assessment of Insulin Resistance (HOMA-IR) (F2,17 = 35.597, p < 0.001, η2p = 0.80), and maximal fat oxidation (MFO) (F2,17 = 4.541, p = 0.026, η2p = 0.348) following the CT program. The maximal oxygen uptake (VO2max) showed significant improvements in the E-G (F = 4.888, p = 0.041, ∆+13.3%). Additionally, the percentage of fat mass (%FM) and body mass (BM) were significantly reduced across all groups (F = 125.244, p < 0.001 and F = 91.130, p < 0.001, respectively). The BM decreased by ∆-9.43% in the E-G (five responders, Rs), ∆+9.21% in the EM-G (5 Rs), and ∆+5.15% in the M-G (3 Rs). The %FM was reduced in the E-G by ∆-22.52% (seven Rs). Fasting insulin and the HOMA-IR significantly improved in both the E-G and EM-G, with fasting insulin showing a ∆-82.1% reduction in the E-G (five Rs) and a ∆-85% reduction in the EM-G (six Rs). Similarly, the HOMA-IR improved by ∆+82.6% in the E-G (three Rs) and by ∆+84.6% in the EM-G (six Rs).
Conclusions: The 12-week inter-day concurrent training program, whether combined with metformin or not, was similarly effective in improving metabolic markers in patients with insulin resistance as metformin treatment alone. Both exercise groups demonstrated a significant reduction in insulin sensitivity and an increase in maximal fat oxidation. Meanwhile, exclusive pharmacological treatment with metformin markedly decreased cardiorespiratory fitness, and consequently, fat oxidation.
BiomoleculesBiochemistry, Genetics and Molecular Biology-Molecular Biology
CiteScore
9.40
自引率
3.60%
发文量
1640
审稿时长
18.28 days
期刊介绍:
Biomolecules (ISSN 2218-273X) is an international, peer-reviewed open access journal focusing on biogenic substances and their biological functions, structures, interactions with other molecules, and their microenvironment as well as biological systems. Biomolecules publishes reviews, regular research papers and short communications. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced.