Joanna Izabela Lachowicz, Jan Alexander, Jan O Aaseth
{"title":"Cyanide and Cyanogenic Compounds-Toxicity, Molecular Targets, and Therapeutic Agents.","authors":"Joanna Izabela Lachowicz, Jan Alexander, Jan O Aaseth","doi":"10.3390/biom14111420","DOIUrl":null,"url":null,"abstract":"<p><p>Cyanide (CN) is a well-known mitochondrial poison. CN poisoning may result from acute or long-term exposure to a number of CN compounds. Recent insight into the chemical affinities of the CN anion has increased our understanding of its toxicity and the mechanisms of antidotal actions, which, together with information on various exposure sources, are reviewed in the present article. A literature search in Scopus, Embase, Web of Science, PubMed, and Google Scholar for the period 2001-2024 revealed that the CN anion after exposure or degradation of CN compounds is distributed to vulnerable copper and iron-containing targets, especially in mitochondria, thus blocking the electron transport chain. Intake of cyanogenic compounds may exert subacute or chronic toxic effects, also because of the interaction with cobalt in vitamin B<sub>12</sub>. Antidotal agents exert their effects through the affinity of CN for cobalt- or iron-containing compounds. Research on CN interactions with metalloproteins may increase our insight into CN toxicity and efficient antidotal regimens.</p>","PeriodicalId":8943,"journal":{"name":"Biomolecules","volume":"14 11","pages":""},"PeriodicalIF":4.8000,"publicationDate":"2024-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11591714/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomolecules","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.3390/biom14111420","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Cyanide (CN) is a well-known mitochondrial poison. CN poisoning may result from acute or long-term exposure to a number of CN compounds. Recent insight into the chemical affinities of the CN anion has increased our understanding of its toxicity and the mechanisms of antidotal actions, which, together with information on various exposure sources, are reviewed in the present article. A literature search in Scopus, Embase, Web of Science, PubMed, and Google Scholar for the period 2001-2024 revealed that the CN anion after exposure or degradation of CN compounds is distributed to vulnerable copper and iron-containing targets, especially in mitochondria, thus blocking the electron transport chain. Intake of cyanogenic compounds may exert subacute or chronic toxic effects, also because of the interaction with cobalt in vitamin B12. Antidotal agents exert their effects through the affinity of CN for cobalt- or iron-containing compounds. Research on CN interactions with metalloproteins may increase our insight into CN toxicity and efficient antidotal regimens.
BiomoleculesBiochemistry, Genetics and Molecular Biology-Molecular Biology
CiteScore
9.40
自引率
3.60%
发文量
1640
审稿时长
18.28 days
期刊介绍:
Biomolecules (ISSN 2218-273X) is an international, peer-reviewed open access journal focusing on biogenic substances and their biological functions, structures, interactions with other molecules, and their microenvironment as well as biological systems. Biomolecules publishes reviews, regular research papers and short communications. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced.