{"title":"Inositol 1,4,5-Trisphosphate Receptor Mutations Associated with Human Disease: Insights into Receptor Function and Dysfunction.","authors":"Vikas Arige, David M MacLean, David I Yule","doi":"10.1146/annurev-physiol-022724-105627","DOIUrl":null,"url":null,"abstract":"<p><p>Inositol 1,4,5-trisphosphate receptors (IP<sub>3</sub>Rs) are ubiquitous intracellular Ca2+ release channels. Their activation, subcellular localization, abundance, and regulation play major roles in defining the spatiotemporal characteristics of intracellular Ca2+ signals, which are in turn fundamental to the appropriate activation of effectors that control a myriad of cellular events. Over the past decade, ∼100 mutations in <i>ITPR</i>s associated with human diseases have been documented. Mutations have been detailed in all three IP<sub>3</sub>R subtypes and all functional domains of the protein, resulting in both gain and loss of receptor function. IP<sub>3</sub>R mutations are associated with a diverse array of pathology including spinocerebellar ataxia, peripheral neuropathy, immunopathy, anhidrosis, hyperparathyroidism, and squamous cell carcinoma. This review focuses on how studying the altered activity of these mutations provides information relating to IP<sub>3</sub>R structure and function, the physiology underpinned by specific IP<sub>3</sub>R subtypes, and the pathological consequences of dysregulated Ca2+ signaling in human disease.</p>","PeriodicalId":8196,"journal":{"name":"Annual review of physiology","volume":" ","pages":""},"PeriodicalIF":15.7000,"publicationDate":"2024-11-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annual review of physiology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1146/annurev-physiol-022724-105627","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Inositol 1,4,5-trisphosphate receptors (IP3Rs) are ubiquitous intracellular Ca2+ release channels. Their activation, subcellular localization, abundance, and regulation play major roles in defining the spatiotemporal characteristics of intracellular Ca2+ signals, which are in turn fundamental to the appropriate activation of effectors that control a myriad of cellular events. Over the past decade, ∼100 mutations in ITPRs associated with human diseases have been documented. Mutations have been detailed in all three IP3R subtypes and all functional domains of the protein, resulting in both gain and loss of receptor function. IP3R mutations are associated with a diverse array of pathology including spinocerebellar ataxia, peripheral neuropathy, immunopathy, anhidrosis, hyperparathyroidism, and squamous cell carcinoma. This review focuses on how studying the altered activity of these mutations provides information relating to IP3R structure and function, the physiology underpinned by specific IP3R subtypes, and the pathological consequences of dysregulated Ca2+ signaling in human disease.
期刊介绍:
Since 1939, the Annual Review of Physiology has been highlighting significant developments in animal physiology. The journal covers diverse areas, including cardiovascular physiology, cell physiology, ecological, evolutionary, and comparative physiology, endocrinology, gastrointestinal physiology, neurophysiology, renal and electrolyte physiology, respiratory physiology, and special topics.