Spirulina platensis Peptide-Loaded Nanoliposomes Alleviate Hepatic Lipid Accumulation in Male Wistar Rats by Influencing Redox Homeostasis and Lipid Metabolism via the AMPK Signaling Pathway.

IF 3.1 4区 生物学 Q3 BIOCHEMISTRY & MOLECULAR BIOLOGY
Katayoon Karimzadeh, Suraj Unniappan, Asgar Zahmatkesh
{"title":"Spirulina platensis Peptide-Loaded Nanoliposomes Alleviate Hepatic Lipid Accumulation in Male Wistar Rats by Influencing Redox Homeostasis and Lipid Metabolism via the AMPK Signaling Pathway.","authors":"Katayoon Karimzadeh, Suraj Unniappan, Asgar Zahmatkesh","doi":"10.1007/s12010-024-05089-w","DOIUrl":null,"url":null,"abstract":"<p><p>Spirulina platensis low-molecular-weight peptides (SP) have been reported to exhibit antioxidant and hepatoprotective properties. However, the limited bioavailability and solubility of SPs limit their potential applications. In this study, to examine the potential anti-obesity effects and underlying mechanisms of SPs, high-fat diet-induced non-alcoholic fatty liver disease (NAFLD) model rats were treated with SPs and SP-loaded nanoliposomes. Furthermore, hepatic biochemical parameters, inflammatory markers, histopathological changes, and genes involved in AMPK signaling were analyzed. SP-loaded nanoliposomes demonstrated a spherical shape with slower and sustained SP release. SP and SP-loaded nanoliposomes mitigated hepatic damage by lowering serum alanine aminotransferase (ALT) and aspartate aminotransferase (AST) and increasing hepatic antioxidant enzymes, which are manifested in improving histopathological findings. In addition, notably, SP-loaded nanoliposomes downregulated lipogenic fatty acid synthase (FAS) and sterol regulatory element-binding protein-1c (SREBP-1c) in the liver. Meanwhile, an upregulation of phosphorylated AMP-activated protein kinase (P-AMPK), lipid acid oxidation-related genes carnitine palmitoyltransferase-1 (CPT-1), and peroxisome proliferator-activated receptor alpha (PPAR-α) was found in the rat liver. This data implies that SP and SP-loaded nanoliposomes exhibit protective potential in rats against the HFD-induced NAFLD, which is mediated through the activation of the AMPK signaling pathway.</p>","PeriodicalId":465,"journal":{"name":"Applied Biochemistry and Biotechnology","volume":" ","pages":""},"PeriodicalIF":3.1000,"publicationDate":"2024-11-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Biochemistry and Biotechnology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s12010-024-05089-w","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Spirulina platensis low-molecular-weight peptides (SP) have been reported to exhibit antioxidant and hepatoprotective properties. However, the limited bioavailability and solubility of SPs limit their potential applications. In this study, to examine the potential anti-obesity effects and underlying mechanisms of SPs, high-fat diet-induced non-alcoholic fatty liver disease (NAFLD) model rats were treated with SPs and SP-loaded nanoliposomes. Furthermore, hepatic biochemical parameters, inflammatory markers, histopathological changes, and genes involved in AMPK signaling were analyzed. SP-loaded nanoliposomes demonstrated a spherical shape with slower and sustained SP release. SP and SP-loaded nanoliposomes mitigated hepatic damage by lowering serum alanine aminotransferase (ALT) and aspartate aminotransferase (AST) and increasing hepatic antioxidant enzymes, which are manifested in improving histopathological findings. In addition, notably, SP-loaded nanoliposomes downregulated lipogenic fatty acid synthase (FAS) and sterol regulatory element-binding protein-1c (SREBP-1c) in the liver. Meanwhile, an upregulation of phosphorylated AMP-activated protein kinase (P-AMPK), lipid acid oxidation-related genes carnitine palmitoyltransferase-1 (CPT-1), and peroxisome proliferator-activated receptor alpha (PPAR-α) was found in the rat liver. This data implies that SP and SP-loaded nanoliposomes exhibit protective potential in rats against the HFD-induced NAFLD, which is mediated through the activation of the AMPK signaling pathway.

螺旋藻肽载纳米脂质体通过 AMPK 信号通路影响氧化还原稳态和脂质代谢,从而缓解雄性 Wistar 大鼠的肝脂质蓄积。
据报道,螺旋藻低分子量肽(SP)具有抗氧化和保护肝脏的特性。然而,SP 的生物利用度和溶解度有限,限制了其潜在应用。在本研究中,为了研究SPs潜在的抗肥胖作用及其内在机制,研究人员用SPs和SP负载的纳米脂质体治疗高脂饮食诱导的非酒精性脂肪肝模型大鼠。此外,还分析了肝脏生化指标、炎症指标、组织病理学变化以及参与 AMPK 信号转导的基因。负载SP的纳米脂质体呈球形,SP释放速度较慢,且具有持续性。SP 和 SP 负载纳米脂质体通过降低血清丙氨酸氨基转移酶(ALT)和天门冬氨酸氨基转移酶(AST)以及增加肝脏抗氧化酶来减轻肝损伤,这表现在组织病理学结果的改善上。此外,SP载体纳米脂质体还能显著下调肝脏中的致脂性脂肪酸合成酶(FAS)和固醇调节元件结合蛋白-1c(SREBP-1c)。同时,大鼠肝脏中的磷酸化 AMP 激活蛋白激酶(P-AMPK)、脂酸氧化相关基因肉碱棕榈酰基转移酶-1(CPT-1)和过氧化物酶体增殖激活受体α(PPAR-α)均上调。这些数据表明,SP和SP载体纳米脂质体对大鼠因高密度脂蛋白胆固醇诱发的非酒精性脂肪肝具有保护作用,而这种保护作用是通过激活AMPK信号通路介导的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Applied Biochemistry and Biotechnology
Applied Biochemistry and Biotechnology 工程技术-生化与分子生物学
CiteScore
5.70
自引率
6.70%
发文量
460
审稿时长
5.3 months
期刊介绍: This journal is devoted to publishing the highest quality innovative papers in the fields of biochemistry and biotechnology. The typical focus of the journal is to report applications of novel scientific and technological breakthroughs, as well as technological subjects that are still in the proof-of-concept stage. Applied Biochemistry and Biotechnology provides a forum for case studies and practical concepts of biotechnology, utilization, including controls, statistical data analysis, problem descriptions unique to a particular application, and bioprocess economic analyses. The journal publishes reviews deemed of interest to readers, as well as book reviews, meeting and symposia notices, and news items relating to biotechnology in both the industrial and academic communities. In addition, Applied Biochemistry and Biotechnology often publishes lists of patents and publications of special interest to readers.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信