Melina Campos, Gordana Rašić, João Viegas, Anthony J. Cornel, João Pinto, Gregory C. Lanzaro
{"title":"Patterns of Gene Flow in Anopheles coluzzii Populations From Two African Oceanic Islands","authors":"Melina Campos, Gordana Rašić, João Viegas, Anthony J. Cornel, João Pinto, Gregory C. Lanzaro","doi":"10.1111/eva.70044","DOIUrl":null,"url":null,"abstract":"<p>The malaria vector <i>Anopheles coluzzii</i> is widespread across West Africa and is the sole vector species on the islands of São Tomé and Príncipe. Our interest in the population genetics of this species on these islands is part of an assessment of their suitability for a field trial involving the release of genetically engineered <i>A. coluzzii</i>. The engineered construct includes two genes that encode anti-Plasmodium peptides, along with a Cas9-based gene drive. We investigated gene flow among <i>A. coluzzii</i> subpopulations on each island to estimate dispersal rates between sites. Sampling covered the known range of <i>A. coluzzii</i> on both islands. Spatial autocorrelation suggests 7 km to be the likely extent of dispersal of this species, whereas estimates based on a convolutional neural network were roughly 3 km. This difference highlights the complexity of dispersal dynamics and the value of using multiple approaches. Our analysis also revealed weak heterogeneity among populations within each island but did identify areas weakly resistant or permissive of gene flow. Overall, <i>A. coluzzii</i> on each of the two islands exist as single Mendelian populations. We expect that a gene construct that includes a low-threshold gene drive and has minimal fitness impact should, once introduced, spread relatively unimpeded across each island.</p>","PeriodicalId":168,"journal":{"name":"Evolutionary Applications","volume":"17 11","pages":""},"PeriodicalIF":3.5000,"publicationDate":"2024-11-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11589655/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Evolutionary Applications","FirstCategoryId":"99","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/eva.70044","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"EVOLUTIONARY BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
The malaria vector Anopheles coluzzii is widespread across West Africa and is the sole vector species on the islands of São Tomé and Príncipe. Our interest in the population genetics of this species on these islands is part of an assessment of their suitability for a field trial involving the release of genetically engineered A. coluzzii. The engineered construct includes two genes that encode anti-Plasmodium peptides, along with a Cas9-based gene drive. We investigated gene flow among A. coluzzii subpopulations on each island to estimate dispersal rates between sites. Sampling covered the known range of A. coluzzii on both islands. Spatial autocorrelation suggests 7 km to be the likely extent of dispersal of this species, whereas estimates based on a convolutional neural network were roughly 3 km. This difference highlights the complexity of dispersal dynamics and the value of using multiple approaches. Our analysis also revealed weak heterogeneity among populations within each island but did identify areas weakly resistant or permissive of gene flow. Overall, A. coluzzii on each of the two islands exist as single Mendelian populations. We expect that a gene construct that includes a low-threshold gene drive and has minimal fitness impact should, once introduced, spread relatively unimpeded across each island.
期刊介绍:
Evolutionary Applications is a fully peer reviewed open access journal. It publishes papers that utilize concepts from evolutionary biology to address biological questions of health, social and economic relevance. Papers are expected to employ evolutionary concepts or methods to make contributions to areas such as (but not limited to): medicine, agriculture, forestry, exploitation and management (fisheries and wildlife), aquaculture, conservation biology, environmental sciences (including climate change and invasion biology), microbiology, and toxicology. All taxonomic groups are covered from microbes, fungi, plants and animals. In order to better serve the community, we also now strongly encourage submissions of papers making use of modern molecular and genetic methods (population and functional genomics, transcriptomics, proteomics, epigenetics, quantitative genetics, association and linkage mapping) to address important questions in any of these disciplines and in an applied evolutionary framework. Theoretical, empirical, synthesis or perspective papers are welcome.