New Biocompatible Ti-MOF@hydroxyapatite Composite Boosted with Gentamicin for Postoperative Infection Control.

IF 5.4 2区 医学 Q2 MATERIALS SCIENCE, BIOMATERIALS
Weronika Bodylska, Adam Junka, Malwina Brożyna, Michał Bartmański, Renata Gadzała-Kopciuch, Anna Jaromin, Jorge A R Navarro, Anna Lukowiak, Marzena Fandzloch
{"title":"New Biocompatible Ti-MOF@hydroxyapatite Composite Boosted with Gentamicin for Postoperative Infection Control.","authors":"Weronika Bodylska, Adam Junka, Malwina Brożyna, Michał Bartmański, Renata Gadzała-Kopciuch, Anna Jaromin, Jorge A R Navarro, Anna Lukowiak, Marzena Fandzloch","doi":"10.1021/acsbiomaterials.4c01230","DOIUrl":null,"url":null,"abstract":"<p><p>The standard clinical management of osteomyelitis involves prolonged antibiotic therapy, which frequently necessitates the excision of infected tissues. However, the efficacy of such treatments is increasingly compromised by the rise of antibiotic-resistant pathogens, underscoring an urgent need for innovative approaches. This study introduces a novel composite material designed to offer dual functionality: robust antimicrobial activity and promotion of bone regeneration. The composite integrates biocompatible hydroxyapatite nanoparticles (HA) with a titanium(IV)-metal-organic framework, MIL-125(Ti)-NH<sub>2</sub>, impregnated with gentamicin (GM). The solvothermally synthesized MIL-125-NH<sub>2</sub>@HA composite demonstrates high cytocompatibility, as evidenced by assays using osteoblasts (U2-OS) and fibroblasts (L929), alongside an absence of hemolytic activity at concentrations of up to 1000 μg/mL. Importantly, the introduction of GM into the composite significantly amplifies its antibacterial efficacy against <i>Staphylococcus aureus</i> and <i>Pseudomonas aeruginosa</i>. Additionally, nanoindentation assessments reveal enhanced mechanical properties of the MIL-125-NH<sub>2</sub>@HA composite, indicating the superior elastic performance relative to unmodified HA. The findings of this research are poised to generate significant interest in the development of metal-organic framework (MOF)-based composites for antimicrobial implant applications, presenting a promising avenue for addressing the challenges posed by antibiotic resistance in bone infections.</p>","PeriodicalId":8,"journal":{"name":"ACS Biomaterials Science & Engineering","volume":" ","pages":"7555-7565"},"PeriodicalIF":5.4000,"publicationDate":"2024-12-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Biomaterials Science & Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1021/acsbiomaterials.4c01230","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/11/26 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

Abstract

The standard clinical management of osteomyelitis involves prolonged antibiotic therapy, which frequently necessitates the excision of infected tissues. However, the efficacy of such treatments is increasingly compromised by the rise of antibiotic-resistant pathogens, underscoring an urgent need for innovative approaches. This study introduces a novel composite material designed to offer dual functionality: robust antimicrobial activity and promotion of bone regeneration. The composite integrates biocompatible hydroxyapatite nanoparticles (HA) with a titanium(IV)-metal-organic framework, MIL-125(Ti)-NH2, impregnated with gentamicin (GM). The solvothermally synthesized MIL-125-NH2@HA composite demonstrates high cytocompatibility, as evidenced by assays using osteoblasts (U2-OS) and fibroblasts (L929), alongside an absence of hemolytic activity at concentrations of up to 1000 μg/mL. Importantly, the introduction of GM into the composite significantly amplifies its antibacterial efficacy against Staphylococcus aureus and Pseudomonas aeruginosa. Additionally, nanoindentation assessments reveal enhanced mechanical properties of the MIL-125-NH2@HA composite, indicating the superior elastic performance relative to unmodified HA. The findings of this research are poised to generate significant interest in the development of metal-organic framework (MOF)-based composites for antimicrobial implant applications, presenting a promising avenue for addressing the challenges posed by antibiotic resistance in bone infections.

新型生物相容性 Ti-MOF@hydroxyapatite 复合材料添加庆大霉素用于术后感染控制
骨髓炎的标准临床治疗包括长期抗生素治疗,通常需要切除受感染的组织。然而,由于抗生素耐药病原体的增加,这种治疗方法的疗效日益受到影响,因此迫切需要创新方法。本研究介绍了一种新型复合材料,旨在提供双重功能:强大的抗菌活性和促进骨再生。这种复合材料将生物相容性好的羟基磷灰石纳米颗粒(HA)与浸渍有庆大霉素(GM)的钛(IV)金属有机框架 MIL-125(Ti)-NH2 结合在一起。通过使用成骨细胞(U2-OS)和成纤维细胞(L929)进行检测,溶解热合成的 MIL-125-NH2@HA 复合材料具有很高的细胞相容性,同时在浓度高达 1000 μg/mL 时不存在溶血活性。重要的是,在复合材料中引入 GM 能显著增强其对金黄色葡萄球菌和铜绿假单胞菌的抗菌功效。此外,纳米压痕评估显示,MIL-125-NH2@HA 复合材料的机械性能得到增强,表明其弹性性能优于未改性的 HA。这项研究成果有望引起人们对开发基于金属有机框架(MOF)的复合材料用于抗菌植入物应用的浓厚兴趣,为应对骨感染中抗生素耐药性带来的挑战提供了一条前景广阔的途径。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
ACS Biomaterials Science & Engineering
ACS Biomaterials Science & Engineering Materials Science-Biomaterials
CiteScore
10.30
自引率
3.40%
发文量
413
期刊介绍: ACS Biomaterials Science & Engineering is the leading journal in the field of biomaterials, serving as an international forum for publishing cutting-edge research and innovative ideas on a broad range of topics: Applications and Health – implantable tissues and devices, prosthesis, health risks, toxicology Bio-interactions and Bio-compatibility – material-biology interactions, chemical/morphological/structural communication, mechanobiology, signaling and biological responses, immuno-engineering, calcification, coatings, corrosion and degradation of biomaterials and devices, biophysical regulation of cell functions Characterization, Synthesis, and Modification – new biomaterials, bioinspired and biomimetic approaches to biomaterials, exploiting structural hierarchy and architectural control, combinatorial strategies for biomaterials discovery, genetic biomaterials design, synthetic biology, new composite systems, bionics, polymer synthesis Controlled Release and Delivery Systems – biomaterial-based drug and gene delivery, bio-responsive delivery of regulatory molecules, pharmaceutical engineering Healthcare Advances – clinical translation, regulatory issues, patient safety, emerging trends Imaging and Diagnostics – imaging agents and probes, theranostics, biosensors, monitoring Manufacturing and Technology – 3D printing, inks, organ-on-a-chip, bioreactor/perfusion systems, microdevices, BioMEMS, optics and electronics interfaces with biomaterials, systems integration Modeling and Informatics Tools – scaling methods to guide biomaterial design, predictive algorithms for structure-function, biomechanics, integrating bioinformatics with biomaterials discovery, metabolomics in the context of biomaterials Tissue Engineering and Regenerative Medicine – basic and applied studies, cell therapies, scaffolds, vascularization, bioartificial organs, transplantation and functionality, cellular agriculture
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信