{"title":"l-Cystine-Based Polyurethane as a Drug-Delivery Vehicle in Targeted Cancer Therapy and Biomedical Applications.","authors":"Sudepta Bauri, Pravesh Kumar Yadav, Avishek Mallick Choudhury, Pralay Maiti","doi":"10.1021/acsabm.4c01479","DOIUrl":null,"url":null,"abstract":"<p><p>Controlled and sustained drug release is a critical aspect of drug-delivery systems (DDSs) that can be used in chemotherapy while ensuring therapy effectiveness and biosafety. Hence, polyurethane (PU) is modified using a biomolecule Cystine (CYS) for protracted drug release, aiming to enhance cancer treatment efficacy while minimizing adverse side effects in tumor patients. To confirm the formation of a polymer structure, characterization techniques such as NMR and FTIR are used, and the morphology is determined using SEM. Biocompatibility of the synthesized polymers is evaluated through cellular assessments, including MTT assay, cell adhesion, and antibacterial assay along with drug release using an anticancer drug, Paclitaxel (PTX). Notably, the incorporation of PTX in the polymer matrix results in minimal mortality (85% viable cells) rates in healthy cells (3T3), in contrast to a 56% mortality rate observed with the pure drug. While PTX shows a burst release and kills cancer cells only for the first 24 h, PU loaded with the drug shows sustained release and kills the cancer cells for 3 days. This vehicle selectively kills 59% of SiHA cells after a consecutive study of 3 days, which highlights the potential of this newly designed vehicle for effective drug delivery, particularly in anticancer treatments. Moreover, cystine's antibacterial property adds up with PU; hence, PU shows antibacterial activity against <i>Staphylococcus aureus</i> (MIC, 20 μg/mL) and also acts as a reductive oxygen species scavenger. Therefore, modifying PU with CYS has shown sustained release of PTX along with a selective effect on cells, underscoring its significance as a superior delivery agent and supported by a shred of convincing evidence.</p>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":" ","pages":"8671-8684"},"PeriodicalIF":4.6000,"publicationDate":"2024-12-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1021/acsabm.4c01479","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/11/26 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0
Abstract
Controlled and sustained drug release is a critical aspect of drug-delivery systems (DDSs) that can be used in chemotherapy while ensuring therapy effectiveness and biosafety. Hence, polyurethane (PU) is modified using a biomolecule Cystine (CYS) for protracted drug release, aiming to enhance cancer treatment efficacy while minimizing adverse side effects in tumor patients. To confirm the formation of a polymer structure, characterization techniques such as NMR and FTIR are used, and the morphology is determined using SEM. Biocompatibility of the synthesized polymers is evaluated through cellular assessments, including MTT assay, cell adhesion, and antibacterial assay along with drug release using an anticancer drug, Paclitaxel (PTX). Notably, the incorporation of PTX in the polymer matrix results in minimal mortality (85% viable cells) rates in healthy cells (3T3), in contrast to a 56% mortality rate observed with the pure drug. While PTX shows a burst release and kills cancer cells only for the first 24 h, PU loaded with the drug shows sustained release and kills the cancer cells for 3 days. This vehicle selectively kills 59% of SiHA cells after a consecutive study of 3 days, which highlights the potential of this newly designed vehicle for effective drug delivery, particularly in anticancer treatments. Moreover, cystine's antibacterial property adds up with PU; hence, PU shows antibacterial activity against Staphylococcus aureus (MIC, 20 μg/mL) and also acts as a reductive oxygen species scavenger. Therefore, modifying PU with CYS has shown sustained release of PTX along with a selective effect on cells, underscoring its significance as a superior delivery agent and supported by a shred of convincing evidence.
期刊介绍:
ACS Applied Bio Materials is an interdisciplinary journal publishing original research covering all aspects of biomaterials and biointerfaces including and beyond the traditional biosensing, biomedical and therapeutic applications.
The journal is devoted to reports of new and original experimental and theoretical research of an applied nature that integrates knowledge in the areas of materials, engineering, physics, bioscience, and chemistry into important bio applications. The journal is specifically interested in work that addresses the relationship between structure and function and assesses the stability and degradation of materials under relevant environmental and biological conditions.