Beatriz Ramírez-Serrano, Marina Querejeta, Zhivko Minchev, María J. Pozo, Géraldine Dubreuil, David Giron
{"title":"Root inoculation with soil-borne microorganisms alters gut bacterial communities and performance of the leaf-chewer Spodoptera exigua","authors":"Beatriz Ramírez-Serrano, Marina Querejeta, Zhivko Minchev, María J. Pozo, Géraldine Dubreuil, David Giron","doi":"10.1111/1758-2229.70049","DOIUrl":null,"url":null,"abstract":"<p>Soil-borne microorganisms can impact leaf-chewing insect fitness by modifying plant nutrition and defence. Whether the altered insect performance is linked to changes in microbial partners of caterpillars remains unclear. We investigated the effects of root inoculation with soil bacteria or fungi on the gut bacterial community and biomass of the folivore <i>Spodoptera exigua</i>. We also explored the potential correlation between both parameters. We performed herbivory bioassay using leaves of tomato plants (<i>Solanum lycopersicum</i>), measured caterpillar weight gain and characterized the gut bacterial communities via 16S rRNA gene metabarcoding. All soil microbes modified the gut bacterial communities, but the extent of these changes depended on the inoculated species. <i>Rhizophagus irregularis</i> and <i>Bacillus amyloliquefaciens</i> had opposite effects on <i>S. exigua</i> weight. While plant inoculation with the fungus influenced gut bacterial diversity, <i>B. amyloliquefaciens</i> also affected the community composition. A reduced abundance of two <i>S. exigua</i> enterococcal symbionts correlated with decreased insect biomass. Our results show that soil microorganisms can induce plant-mediated changes in the gut bacterial community of foliar-feeding caterpillars. We propose that the impact of these alterations on insect performance might rely on specific adaptations within the gut bacteria, rather than solely on the occurrence of changes.</p>","PeriodicalId":163,"journal":{"name":"Environmental Microbiology Reports","volume":"16 6","pages":""},"PeriodicalIF":3.6000,"publicationDate":"2024-11-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/1758-2229.70049","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental Microbiology Reports","FirstCategoryId":"99","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/1758-2229.70049","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Soil-borne microorganisms can impact leaf-chewing insect fitness by modifying plant nutrition and defence. Whether the altered insect performance is linked to changes in microbial partners of caterpillars remains unclear. We investigated the effects of root inoculation with soil bacteria or fungi on the gut bacterial community and biomass of the folivore Spodoptera exigua. We also explored the potential correlation between both parameters. We performed herbivory bioassay using leaves of tomato plants (Solanum lycopersicum), measured caterpillar weight gain and characterized the gut bacterial communities via 16S rRNA gene metabarcoding. All soil microbes modified the gut bacterial communities, but the extent of these changes depended on the inoculated species. Rhizophagus irregularis and Bacillus amyloliquefaciens had opposite effects on S. exigua weight. While plant inoculation with the fungus influenced gut bacterial diversity, B. amyloliquefaciens also affected the community composition. A reduced abundance of two S. exigua enterococcal symbionts correlated with decreased insect biomass. Our results show that soil microorganisms can induce plant-mediated changes in the gut bacterial community of foliar-feeding caterpillars. We propose that the impact of these alterations on insect performance might rely on specific adaptations within the gut bacteria, rather than solely on the occurrence of changes.
期刊介绍:
The journal is identical in scope to Environmental Microbiology, shares the same editorial team and submission site, and will apply the same high level acceptance criteria. The two journals will be mutually supportive and evolve side-by-side.
Environmental Microbiology Reports provides a high profile vehicle for publication of the most innovative, original and rigorous research in the field. The scope of the Journal encompasses the diversity of current research on microbial processes in the environment, microbial communities, interactions and evolution and includes, but is not limited to, the following:
the structure, activities and communal behaviour of microbial communities
microbial community genetics and evolutionary processes
microbial symbioses, microbial interactions and interactions with plants, animals and abiotic factors
microbes in the tree of life, microbial diversification and evolution
population biology and clonal structure
microbial metabolic and structural diversity
microbial physiology, growth and survival
microbes and surfaces, adhesion and biofouling
responses to environmental signals and stress factors
modelling and theory development
pollution microbiology
extremophiles and life in extreme and unusual little-explored habitats
element cycles and biogeochemical processes, primary and secondary production
microbes in a changing world, microbially-influenced global changes
evolution and diversity of archaeal and bacterial viruses
new technological developments in microbial ecology and evolution, in particular for the study of activities of microbial communities, non-culturable microorganisms and emerging pathogens.