{"title":"Stability of Standing Periodic Waves in the Massive Thirring Model","authors":"Shikun Cui, Dmitry E. Pelinovsky","doi":"10.1111/sapm.12789","DOIUrl":null,"url":null,"abstract":"<p>We analyze the spectral stability of the standing periodic waves in the massive Thirring model in laboratory coordinates. Since solutions of the linearized MTM equation are related to the squared eigenfunctions of the linear Lax system, the spectral stability of the standing periodic waves can be studied by using their Lax spectrum. We show analytically that each family of standing periodic waves is distinguished by the location of eight eigenvalues which coincide with the end points of the spectral bands of the Lax spectrum. The standing periodic waves are proven to be spectrally stable if the eight eigenvalues are located either on the imaginary axis or along the diagonals of the complex plane. By computing the Lax spectrum numerically, we show that this stability criterion is satisfied for some standing periodic waves.</p>","PeriodicalId":51174,"journal":{"name":"Studies in Applied Mathematics","volume":"154 1","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2024-11-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/sapm.12789","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Studies in Applied Mathematics","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/sapm.12789","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
We analyze the spectral stability of the standing periodic waves in the massive Thirring model in laboratory coordinates. Since solutions of the linearized MTM equation are related to the squared eigenfunctions of the linear Lax system, the spectral stability of the standing periodic waves can be studied by using their Lax spectrum. We show analytically that each family of standing periodic waves is distinguished by the location of eight eigenvalues which coincide with the end points of the spectral bands of the Lax spectrum. The standing periodic waves are proven to be spectrally stable if the eight eigenvalues are located either on the imaginary axis or along the diagonals of the complex plane. By computing the Lax spectrum numerically, we show that this stability criterion is satisfied for some standing periodic waves.
期刊介绍:
Studies in Applied Mathematics explores the interplay between mathematics and the applied disciplines. It publishes papers that advance the understanding of physical processes, or develop new mathematical techniques applicable to physical and real-world problems. Its main themes include (but are not limited to) nonlinear phenomena, mathematical modeling, integrable systems, asymptotic analysis, inverse problems, numerical analysis, dynamical systems, scientific computing and applications to areas such as fluid mechanics, mathematical biology, and optics.