Propagation Dynamics in Time-Periodic Reaction–Diffusion Systems with Network Structures

IF 2.6 2区 数学 Q1 MATHEMATICS, APPLIED
Dong Deng, Wan-Tong Li, Shigui Ruan, Liang Zhang
{"title":"Propagation Dynamics in Time-Periodic Reaction–Diffusion Systems with Network Structures","authors":"Dong Deng,&nbsp;Wan-Tong Li,&nbsp;Shigui Ruan,&nbsp;Liang Zhang","doi":"10.1111/sapm.12788","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>The main purpose of this paper is to study the propagation dynamics for a class of time-periodic reaction–diffusion systems with network structures. In the first part, by using the persistence theory, we obtain threshold results for the extinction and uniform persistence of the corresponding periodic ordinary differential system. The second part is concerned with the asymptotic speed of spread and traveling wave solutions. The uniform boundedness of solutions is proved by employing the refined high-dimensional local <span></span><math>\n <semantics>\n <msup>\n <mi>L</mi>\n <mi>p</mi>\n </msup>\n <annotation>$L^{p}$</annotation>\n </semantics></math>-estimate and abstract periodic evolution theories and the spreading properties of the corresponding solutions are established. We also prove the existence of the critical periodic traveling wave with wave speed <span></span><math>\n <semantics>\n <mrow>\n <mi>c</mi>\n <mo>=</mo>\n <msup>\n <mi>c</mi>\n <mo>∗</mo>\n </msup>\n </mrow>\n <annotation>$c=c^{*}$</annotation>\n </semantics></math> by using a delicate limitation argument. Finally, these results are applied to a multistage epidemiological model.</p></div>","PeriodicalId":51174,"journal":{"name":"Studies in Applied Mathematics","volume":"154 1","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2024-11-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Studies in Applied Mathematics","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/sapm.12788","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

The main purpose of this paper is to study the propagation dynamics for a class of time-periodic reaction–diffusion systems with network structures. In the first part, by using the persistence theory, we obtain threshold results for the extinction and uniform persistence of the corresponding periodic ordinary differential system. The second part is concerned with the asymptotic speed of spread and traveling wave solutions. The uniform boundedness of solutions is proved by employing the refined high-dimensional local L p $L^{p}$ -estimate and abstract periodic evolution theories and the spreading properties of the corresponding solutions are established. We also prove the existence of the critical periodic traveling wave with wave speed c = c $c=c^{*}$ by using a delicate limitation argument. Finally, these results are applied to a multistage epidemiological model.

具有网络结构的时间周期反应-扩散系统中的传播动力学
本文的主要目的是研究一类具有网络结构的时间周期反应扩散系统的传播动力学。在第一部分,我们利用持久性理论,得到了相应周期常微分系统的消亡和均匀持久性的阈值结果。第二部分涉及传播和行波解的渐近速度。我们利用精炼的高维局部 L p $L^{p}$ 估计和抽象周期演化理论证明了解的均匀有界性,并建立了相应解的扩散特性。我们还通过精巧的限制论证证明了波速为 c = c ∗ $c=c^{*}$ 的临界周期行波的存在性。最后,我们将这些结果应用于一个多阶段流行病学模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Studies in Applied Mathematics
Studies in Applied Mathematics 数学-应用数学
CiteScore
4.30
自引率
3.70%
发文量
66
审稿时长
>12 weeks
期刊介绍: Studies in Applied Mathematics explores the interplay between mathematics and the applied disciplines. It publishes papers that advance the understanding of physical processes, or develop new mathematical techniques applicable to physical and real-world problems. Its main themes include (but are not limited to) nonlinear phenomena, mathematical modeling, integrable systems, asymptotic analysis, inverse problems, numerical analysis, dynamical systems, scientific computing and applications to areas such as fluid mechanics, mathematical biology, and optics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信