Yuncherl Choi, Taeyoung Ha, Jongmin Han, Sewoong Kim, Doo Seok Lee
{"title":"Turing Instability and Dynamic Bifurcation for the One-Dimensional Gray–Scott Model","authors":"Yuncherl Choi, Taeyoung Ha, Jongmin Han, Sewoong Kim, Doo Seok Lee","doi":"10.1111/sapm.12786","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>We study the dynamic bifurcation of the one-dimensional Gray–Scott model by taking the diffusion coefficient <span></span><math>\n <semantics>\n <mi>λ</mi>\n <annotation>${\\lambda }$</annotation>\n </semantics></math> of the reactor as a bifurcation parameter. We define a parameter space <span></span><math>\n <semantics>\n <mi>Σ</mi>\n <annotation>$\\Sigma$</annotation>\n </semantics></math> of <span></span><math>\n <semantics>\n <mrow>\n <mo>(</mo>\n <mi>k</mi>\n <mo>,</mo>\n <mi>F</mi>\n <mo>)</mo>\n </mrow>\n <annotation>$(k,F)$</annotation>\n </semantics></math> for which the Turing instability may happen. Then, we show that it really occurs below the critical number <span></span><math>\n <semantics>\n <msub>\n <mi>λ</mi>\n <mn>0</mn>\n </msub>\n <annotation>${\\lambda }_0$</annotation>\n </semantics></math> and obtain rigorous formula for the bifurcated stable patterns. When the critical eigenvalue is simple, the bifurcation leads to a continuous (resp. jump) transition for <span></span><math>\n <semantics>\n <mrow>\n <mi>λ</mi>\n <mo><</mo>\n <msub>\n <mi>λ</mi>\n <mn>0</mn>\n </msub>\n </mrow>\n <annotation>${\\lambda }&lt;{\\lambda }_0$</annotation>\n </semantics></math> if <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mi>A</mi>\n <mi>m</mi>\n </msub>\n <mrow>\n <mo>(</mo>\n <mi>k</mi>\n <mo>,</mo>\n <mi>F</mi>\n <mo>)</mo>\n </mrow>\n </mrow>\n <annotation>$A_m(k,F)$</annotation>\n </semantics></math> is negative (resp. positive). We prove that <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mi>A</mi>\n <mi>m</mi>\n </msub>\n <mrow>\n <mo>(</mo>\n <mi>k</mi>\n <mo>,</mo>\n <mi>F</mi>\n <mo>)</mo>\n </mrow>\n <mo>></mo>\n <mn>0</mn>\n </mrow>\n <annotation>$A_m(k,F)&gt;0$</annotation>\n </semantics></math> when <span></span><math>\n <semantics>\n <mrow>\n <mo>(</mo>\n <mi>k</mi>\n <mo>,</mo>\n <mi>F</mi>\n <mo>)</mo>\n </mrow>\n <annotation>$(k,F)$</annotation>\n </semantics></math> lies near the Bogdanov–Takens point <span></span><math>\n <semantics>\n <mrow>\n <mo>(</mo>\n <mfrac>\n <mn>1</mn>\n <mn>16</mn>\n </mfrac>\n <mo>,</mo>\n <mfrac>\n <mn>1</mn>\n <mn>16</mn>\n </mfrac>\n <mo>)</mo>\n </mrow>\n <annotation>$(\\frac{1}{16}, \\frac{1}{16})$</annotation>\n </semantics></math>. When the critical eigenvalue is double, we have a supercritical bifurcation that produces an <span></span><math>\n <semantics>\n <msup>\n <mi>S</mi>\n <mn>1</mn>\n </msup>\n <annotation>$S^1$</annotation>\n </semantics></math>-attractor <span></span><math>\n <semantics>\n <msub>\n <mi>Ω</mi>\n <mi>m</mi>\n </msub>\n <annotation>$\\Omega _m$</annotation>\n </semantics></math>. We prove that <span></span><math>\n <semantics>\n <msub>\n <mi>Ω</mi>\n <mi>m</mi>\n </msub>\n <annotation>$\\Omega _m$</annotation>\n </semantics></math> consists of four asymptotically stable static solutions, four saddle static solutions, and orbits connecting them. We also provide numerical results that illustrate the main theorems.</p></div>","PeriodicalId":51174,"journal":{"name":"Studies in Applied Mathematics","volume":"154 1","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2024-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Studies in Applied Mathematics","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/sapm.12786","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
We study the dynamic bifurcation of the one-dimensional Gray–Scott model by taking the diffusion coefficient of the reactor as a bifurcation parameter. We define a parameter space of for which the Turing instability may happen. Then, we show that it really occurs below the critical number and obtain rigorous formula for the bifurcated stable patterns. When the critical eigenvalue is simple, the bifurcation leads to a continuous (resp. jump) transition for if is negative (resp. positive). We prove that when lies near the Bogdanov–Takens point . When the critical eigenvalue is double, we have a supercritical bifurcation that produces an -attractor . We prove that consists of four asymptotically stable static solutions, four saddle static solutions, and orbits connecting them. We also provide numerical results that illustrate the main theorems.
期刊介绍:
Studies in Applied Mathematics explores the interplay between mathematics and the applied disciplines. It publishes papers that advance the understanding of physical processes, or develop new mathematical techniques applicable to physical and real-world problems. Its main themes include (but are not limited to) nonlinear phenomena, mathematical modeling, integrable systems, asymptotic analysis, inverse problems, numerical analysis, dynamical systems, scientific computing and applications to areas such as fluid mechanics, mathematical biology, and optics.