Turing Instability and Dynamic Bifurcation for the One-Dimensional Gray–Scott Model

IF 2.6 2区 数学 Q1 MATHEMATICS, APPLIED
Yuncherl Choi, Taeyoung Ha, Jongmin Han, Sewoong Kim, Doo Seok Lee
{"title":"Turing Instability and Dynamic Bifurcation for the One-Dimensional Gray–Scott Model","authors":"Yuncherl Choi,&nbsp;Taeyoung Ha,&nbsp;Jongmin Han,&nbsp;Sewoong Kim,&nbsp;Doo Seok Lee","doi":"10.1111/sapm.12786","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>We study the dynamic bifurcation of the one-dimensional Gray–Scott model by taking the diffusion coefficient <span></span><math>\n <semantics>\n <mi>λ</mi>\n <annotation>${\\lambda }$</annotation>\n </semantics></math> of the reactor as a bifurcation parameter. We define a parameter space <span></span><math>\n <semantics>\n <mi>Σ</mi>\n <annotation>$\\Sigma$</annotation>\n </semantics></math> of <span></span><math>\n <semantics>\n <mrow>\n <mo>(</mo>\n <mi>k</mi>\n <mo>,</mo>\n <mi>F</mi>\n <mo>)</mo>\n </mrow>\n <annotation>$(k,F)$</annotation>\n </semantics></math> for which the Turing instability may happen. Then, we show that it really occurs below the critical number <span></span><math>\n <semantics>\n <msub>\n <mi>λ</mi>\n <mn>0</mn>\n </msub>\n <annotation>${\\lambda }_0$</annotation>\n </semantics></math> and obtain rigorous formula for the bifurcated stable patterns. When the critical eigenvalue is simple, the bifurcation leads to a continuous (resp. jump) transition for <span></span><math>\n <semantics>\n <mrow>\n <mi>λ</mi>\n <mo>&lt;</mo>\n <msub>\n <mi>λ</mi>\n <mn>0</mn>\n </msub>\n </mrow>\n <annotation>${\\lambda }&amp;lt;{\\lambda }_0$</annotation>\n </semantics></math> if <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mi>A</mi>\n <mi>m</mi>\n </msub>\n <mrow>\n <mo>(</mo>\n <mi>k</mi>\n <mo>,</mo>\n <mi>F</mi>\n <mo>)</mo>\n </mrow>\n </mrow>\n <annotation>$A_m(k,F)$</annotation>\n </semantics></math> is negative (resp. positive). We prove that <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mi>A</mi>\n <mi>m</mi>\n </msub>\n <mrow>\n <mo>(</mo>\n <mi>k</mi>\n <mo>,</mo>\n <mi>F</mi>\n <mo>)</mo>\n </mrow>\n <mo>&gt;</mo>\n <mn>0</mn>\n </mrow>\n <annotation>$A_m(k,F)&amp;gt;0$</annotation>\n </semantics></math> when <span></span><math>\n <semantics>\n <mrow>\n <mo>(</mo>\n <mi>k</mi>\n <mo>,</mo>\n <mi>F</mi>\n <mo>)</mo>\n </mrow>\n <annotation>$(k,F)$</annotation>\n </semantics></math> lies near the Bogdanov–Takens point <span></span><math>\n <semantics>\n <mrow>\n <mo>(</mo>\n <mfrac>\n <mn>1</mn>\n <mn>16</mn>\n </mfrac>\n <mo>,</mo>\n <mfrac>\n <mn>1</mn>\n <mn>16</mn>\n </mfrac>\n <mo>)</mo>\n </mrow>\n <annotation>$(\\frac{1}{16}, \\frac{1}{16})$</annotation>\n </semantics></math>. When the critical eigenvalue is double, we have a supercritical bifurcation that produces an <span></span><math>\n <semantics>\n <msup>\n <mi>S</mi>\n <mn>1</mn>\n </msup>\n <annotation>$S^1$</annotation>\n </semantics></math>-attractor <span></span><math>\n <semantics>\n <msub>\n <mi>Ω</mi>\n <mi>m</mi>\n </msub>\n <annotation>$\\Omega _m$</annotation>\n </semantics></math>. We prove that <span></span><math>\n <semantics>\n <msub>\n <mi>Ω</mi>\n <mi>m</mi>\n </msub>\n <annotation>$\\Omega _m$</annotation>\n </semantics></math> consists of four asymptotically stable static solutions, four saddle static solutions, and orbits connecting them. We also provide numerical results that illustrate the main theorems.</p></div>","PeriodicalId":51174,"journal":{"name":"Studies in Applied Mathematics","volume":"154 1","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2024-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Studies in Applied Mathematics","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/sapm.12786","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

We study the dynamic bifurcation of the one-dimensional Gray–Scott model by taking the diffusion coefficient λ ${\lambda }$ of the reactor as a bifurcation parameter. We define a parameter space Σ $\Sigma$ of ( k , F ) $(k,F)$ for which the Turing instability may happen. Then, we show that it really occurs below the critical number λ 0 ${\lambda }_0$ and obtain rigorous formula for the bifurcated stable patterns. When the critical eigenvalue is simple, the bifurcation leads to a continuous (resp. jump) transition for λ < λ 0 ${\lambda }&lt;{\lambda }_0$ if A m ( k , F ) $A_m(k,F)$ is negative (resp. positive). We prove that A m ( k , F ) > 0 $A_m(k,F)&gt;0$ when ( k , F ) $(k,F)$ lies near the Bogdanov–Takens point ( 1 16 , 1 16 ) $(\frac{1}{16}, \frac{1}{16})$ . When the critical eigenvalue is double, we have a supercritical bifurcation that produces an S 1 $S^1$ -attractor Ω m $\Omega _m$ . We prove that Ω m $\Omega _m$ consists of four asymptotically stable static solutions, four saddle static solutions, and orbits connecting them. We also provide numerical results that illustrate the main theorems.

一维格雷-斯科特模型的图灵不稳定性和动态分岔
我们以反应器的扩散系数 λ ${lambda }$ 作为分岔参数,研究了一维格雷-斯科特模型的动态分岔。我们定义了图灵不稳定性可能发生的参数空间 Σ $\Sigma$ of ( k , F ) $(k,F)$ 。然后,我们证明了图灵不稳定性确实发生在临界值 λ 0 ${\lambda }_0$ 以下,并得到了分岔稳定模式的严格公式。当临界特征值简单时,如果 A m ( k , F ) $A_m(k,F)$ 为负(或正),分岔会导致 λ < λ 0 ${\lambda }&lt;{\lambda }_0$ 的连续(或跳跃)转换。我们证明,当 ( k , F ) $(k,F)$ 位于波格丹诺夫-塔肯斯点 ( 1 16 , 1 16 ) $(\frac{1}{16}, \frac{1}{16})$ 附近时,A m ( k , F ) > 0 $A_m(k,F)&gt;0$ 。当临界特征值为双倍时,我们会出现一个超临界分岔,产生一个 S 1 $S^1$ -attractor Ω m $\Omega _m$ 。我们证明 Ω m $\Omega _m$ 包含四个渐近稳定的静态解、四个鞍状静态解以及连接它们的轨道。我们还提供了说明主要定理的数值结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Studies in Applied Mathematics
Studies in Applied Mathematics 数学-应用数学
CiteScore
4.30
自引率
3.70%
发文量
66
审稿时长
>12 weeks
期刊介绍: Studies in Applied Mathematics explores the interplay between mathematics and the applied disciplines. It publishes papers that advance the understanding of physical processes, or develop new mathematical techniques applicable to physical and real-world problems. Its main themes include (but are not limited to) nonlinear phenomena, mathematical modeling, integrable systems, asymptotic analysis, inverse problems, numerical analysis, dynamical systems, scientific computing and applications to areas such as fluid mechanics, mathematical biology, and optics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信