Jiangnan Xiong , Bingyan Qu , Rulong Zhou , Lei Wang
{"title":"Long persistent self-activated luminescence enhanced by Cd2+ in CaGa4O7 for optical information storage","authors":"Jiangnan Xiong , Bingyan Qu , Rulong Zhou , Lei Wang","doi":"10.1016/j.optmat.2024.116457","DOIUrl":null,"url":null,"abstract":"<div><div>Comparing long persistent luminescence (LPL) materials, typically doped or optimized with lanthanide or transition metal ions, the optimization of the intrinsic LPL performance in dopant-free, self-activated luminescent materials remains largely underexplored. In this study, we report a surprising enhancement of LPL in a self-activated material, CaGa₄O₇, through the introduction of Cd<sup>2</sup>⁺ ions—an element not traditionally associated with luminescence centers. This modification extended the afterglow duration from just 6 min to almost 2 h, a substantial improvement that has not been previously observed. Through thermoluminescence analysis and first-principles calculations, we elucidate that this enhancement arises from the formation of oxygen vacancies (V<sub>O</sub>), which are promoted by the incorporation of Cd<sup>2</sup>⁺. In addition, this material can store and read information with the aid of temperature, demonstrating its potential applications in information storage and anti-counterfeiting areas. Our findings offer a promising strategy for further engineering the intrinsic LPL properties of self-activated materials, paving the way for their functional applications in the future.</div></div>","PeriodicalId":19564,"journal":{"name":"Optical Materials","volume":"158 ","pages":"Article 116457"},"PeriodicalIF":3.8000,"publicationDate":"2024-11-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Optical Materials","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0925346724016409","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Comparing long persistent luminescence (LPL) materials, typically doped or optimized with lanthanide or transition metal ions, the optimization of the intrinsic LPL performance in dopant-free, self-activated luminescent materials remains largely underexplored. In this study, we report a surprising enhancement of LPL in a self-activated material, CaGa₄O₇, through the introduction of Cd2⁺ ions—an element not traditionally associated with luminescence centers. This modification extended the afterglow duration from just 6 min to almost 2 h, a substantial improvement that has not been previously observed. Through thermoluminescence analysis and first-principles calculations, we elucidate that this enhancement arises from the formation of oxygen vacancies (VO), which are promoted by the incorporation of Cd2⁺. In addition, this material can store and read information with the aid of temperature, demonstrating its potential applications in information storage and anti-counterfeiting areas. Our findings offer a promising strategy for further engineering the intrinsic LPL properties of self-activated materials, paving the way for their functional applications in the future.
期刊介绍:
Optical Materials has an open access mirror journal Optical Materials: X, sharing the same aims and scope, editorial team, submission system and rigorous peer review.
The purpose of Optical Materials is to provide a means of communication and technology transfer between researchers who are interested in materials for potential device applications. The journal publishes original papers and review articles on the design, synthesis, characterisation and applications of optical materials.
OPTICAL MATERIALS focuses on:
• Optical Properties of Material Systems;
• The Materials Aspects of Optical Phenomena;
• The Materials Aspects of Devices and Applications.
Authors can submit separate research elements describing their data to Data in Brief and methods to Methods X.