Zushan Zhang , Xiangchun Ning , Shaobo Wang , Lipeng Tian , Tianyong Zheng
{"title":"Numerical simulation of temperature in forming surroundings for E-Glass fiber","authors":"Zushan Zhang , Xiangchun Ning , Shaobo Wang , Lipeng Tian , Tianyong Zheng","doi":"10.1016/j.jnoncrysol.2024.123339","DOIUrl":null,"url":null,"abstract":"<div><div>In spinning, the temperature of the glass melt and the forming surroundings play a crucial role in determining the diameter of the electrical glass (E-glass) filament. It is essential to control or predict the temperature of the forming surroundings. In this study, a simplified cooling model of the fin for G75 E-glass fiber was constructed and simulated to explore the influence of ambient temperature on the forming process of E-glass fiber. The multi-physical field coupling of solid-fluid conjugate heat transferring and surface-to-surface radiation imitates the cooling model. The temperature of the bottom of the bushing plate was measured with an infrared thermal imaging instrument, and the ambient temperature of the area of filament root forming was measured with a thermocouple. Considering the device is fixed, the key experimental variable of the numerical simulation is the distance from the top of the cooling fin to the bottom surface of the bushing plate. The simulated results are compared with the actual measurements, proving that it is feasible for the simplified cooling model to simulate the forming of E-glass fiber. The results of numerical simulations also show that (1) the temperature of the glass melt at the outlet of the nozzle is 1400 K and the ambient temperature of the filament root forming dropped by >500 K; (2) when the top of the cooling fin is 4 mm away from the bottom surface of the bushing plate, the fin has the best cooling effect on the E-glass fiber.</div></div>","PeriodicalId":16461,"journal":{"name":"Journal of Non-crystalline Solids","volume":"649 ","pages":"Article 123339"},"PeriodicalIF":3.2000,"publicationDate":"2024-11-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Non-crystalline Solids","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022309324005155","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, CERAMICS","Score":null,"Total":0}
引用次数: 0
Abstract
In spinning, the temperature of the glass melt and the forming surroundings play a crucial role in determining the diameter of the electrical glass (E-glass) filament. It is essential to control or predict the temperature of the forming surroundings. In this study, a simplified cooling model of the fin for G75 E-glass fiber was constructed and simulated to explore the influence of ambient temperature on the forming process of E-glass fiber. The multi-physical field coupling of solid-fluid conjugate heat transferring and surface-to-surface radiation imitates the cooling model. The temperature of the bottom of the bushing plate was measured with an infrared thermal imaging instrument, and the ambient temperature of the area of filament root forming was measured with a thermocouple. Considering the device is fixed, the key experimental variable of the numerical simulation is the distance from the top of the cooling fin to the bottom surface of the bushing plate. The simulated results are compared with the actual measurements, proving that it is feasible for the simplified cooling model to simulate the forming of E-glass fiber. The results of numerical simulations also show that (1) the temperature of the glass melt at the outlet of the nozzle is 1400 K and the ambient temperature of the filament root forming dropped by >500 K; (2) when the top of the cooling fin is 4 mm away from the bottom surface of the bushing plate, the fin has the best cooling effect on the E-glass fiber.
期刊介绍:
The Journal of Non-Crystalline Solids publishes review articles, research papers, and Letters to the Editor on amorphous and glassy materials, including inorganic, organic, polymeric, hybrid and metallic systems. Papers on partially glassy materials, such as glass-ceramics and glass-matrix composites, and papers involving the liquid state are also included in so far as the properties of the liquid are relevant for the formation of the solid.
In all cases the papers must demonstrate both novelty and importance to the field, by way of significant advances in understanding or application of non-crystalline solids; in the case of Letters, a compelling case must also be made for expedited handling.