Long Han , Shoutao Gong , Haiyang Zhang , Min Yang , Omer Javed , Xiaoming Yan , Gaohong He , Fengxiang Zhang
{"title":"High performance anion exchange membrane containing large, rigid branching structural unit for fuel cell and electrodialysis applications","authors":"Long Han , Shoutao Gong , Haiyang Zhang , Min Yang , Omer Javed , Xiaoming Yan , Gaohong He , Fengxiang Zhang","doi":"10.1016/j.memsci.2024.123552","DOIUrl":null,"url":null,"abstract":"<div><div>Highly conductive and robust anion exchange membrane (AEM) is the key for development of alkali fuel cell and electrodialysis. We herein report novel, branched polyarylpiperidinium AEMs containing 1,3-dicarbazole-9-ylbenzene (DCB) unit. As a larger, more rigid branching unit relative to the conventional one, DCB can create higher fraction of free volume in the AEM, induce more significant microphase separation and better restrict water swelling of the membrane. The prepared qTPDCB-5.5 AEM exhibited an excellent hydroxide conductivity (175.3 mS cm<sup>−1</sup>) and a low swelling ratio (21 %) at 90 °C; when soaked in aqueous sodium hydroxide solution (2 mol/L, 80 °C) for 1000 h, qTPDCB-5.5 showed a high conductivity retention (96.5 %). Its hydrogen/oxygen fuel cell reached an impressive peak power density (1.83 W cm<sup>−2</sup>), and the qTPDCB-5.5 AEM did not experience appreciable structural decomposition after the cell worked at 0.2 A cm<sup>−2</sup> for 230 h (including >100 h intermittent discharge). Owing to its high conductivity and swelling resistance, the qTPDCB-5.5 membrane also showed good performance in electrodialysis, and gave rise to low energy consumption (2.72 kWh kg<sup>−1</sup>) when used for desalinating 0.1 M NaCl solution. This work highlights the importance and provides the methodology of incorporating large, rigid branching unit in the structure of high performance AEM for fuel cell and electrodialysis applications.</div></div>","PeriodicalId":368,"journal":{"name":"Journal of Membrane Science","volume":"717 ","pages":"Article 123552"},"PeriodicalIF":8.4000,"publicationDate":"2024-11-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Membrane Science","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0376738824011463","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Highly conductive and robust anion exchange membrane (AEM) is the key for development of alkali fuel cell and electrodialysis. We herein report novel, branched polyarylpiperidinium AEMs containing 1,3-dicarbazole-9-ylbenzene (DCB) unit. As a larger, more rigid branching unit relative to the conventional one, DCB can create higher fraction of free volume in the AEM, induce more significant microphase separation and better restrict water swelling of the membrane. The prepared qTPDCB-5.5 AEM exhibited an excellent hydroxide conductivity (175.3 mS cm−1) and a low swelling ratio (21 %) at 90 °C; when soaked in aqueous sodium hydroxide solution (2 mol/L, 80 °C) for 1000 h, qTPDCB-5.5 showed a high conductivity retention (96.5 %). Its hydrogen/oxygen fuel cell reached an impressive peak power density (1.83 W cm−2), and the qTPDCB-5.5 AEM did not experience appreciable structural decomposition after the cell worked at 0.2 A cm−2 for 230 h (including >100 h intermittent discharge). Owing to its high conductivity and swelling resistance, the qTPDCB-5.5 membrane also showed good performance in electrodialysis, and gave rise to low energy consumption (2.72 kWh kg−1) when used for desalinating 0.1 M NaCl solution. This work highlights the importance and provides the methodology of incorporating large, rigid branching unit in the structure of high performance AEM for fuel cell and electrodialysis applications.
期刊介绍:
The Journal of Membrane Science is a publication that focuses on membrane systems and is aimed at academic and industrial chemists, chemical engineers, materials scientists, and membranologists. It publishes original research and reviews on various aspects of membrane transport, membrane formation/structure, fouling, module/process design, and processes/applications. The journal primarily focuses on the structure, function, and performance of non-biological membranes but also includes papers that relate to biological membranes. The Journal of Membrane Science publishes Full Text Papers, State-of-the-Art Reviews, Letters to the Editor, and Perspectives.