Dual-mechanism enhanced energy efficiency of nanofiber composite membrane for photothermal membrane distillation

IF 8.4 1区 工程技术 Q1 ENGINEERING, CHEMICAL
Shuye Wang , Zhichao Zhang , Zongjie Li , Weimin Kang
{"title":"Dual-mechanism enhanced energy efficiency of nanofiber composite membrane for photothermal membrane distillation","authors":"Shuye Wang ,&nbsp;Zhichao Zhang ,&nbsp;Zongjie Li ,&nbsp;Weimin Kang","doi":"10.1016/j.memsci.2024.123539","DOIUrl":null,"url":null,"abstract":"<div><div>A novel nanofiber composite membrane with dual-mechanism enhanced energy efficiency for efficient photothermal membrane distillation was constructed, by <em>in-situ</em> growth of copper-based metal-organic framework (Cu-CAT) on the surface of polyamide 6 nanofiber membrane (Cu-CAT@PA6 NM) as hydrophilic photothermal layer, polystyrene nanofiber membrane doped with phase change capsule as heat storage and insulation layer, polyvinylidene fluoride tree-like nanofiber membrane as hydrophobic support layer. The spiny structure of Cu-CAT has high photothermal efficiency, and the surface temperature of the Cu-CAT@PA6 NM reaches 68 °C. The fluffy middle layer can store heat energy generated by the photothermal layer, and reduce the heat diffusion to the permeation side. This configuration collaboratively heightens the transmembrane temperature difference, improves the energy efficiency, and thus improves the permeation flux. Furthermore, the support layer confers the essential resistance to wettability and long-term stability for PMD. Under 1 kw·m<sup>−2</sup> illumination, feed/permeation side temperature of 25 °C/20 °C, the photothermal phase change nanofiber composite membrane achieved a remarkable permeation flux of 1.60 kg m<sup>−2</sup> h<sup>−1</sup>, coupled with a salt rejection rate of 99.99 %, and the energy utilization efficiency of 81.50 %. More importantly, after 7 days of continuous testing, the permeation flux remained consistently high at 1.15 kg m<sup>−2</sup> h<sup>−1</sup>, with salt rejection maintaining above 99.99 %, demonstrating the membrane's durability.</div></div>","PeriodicalId":368,"journal":{"name":"Journal of Membrane Science","volume":"717 ","pages":"Article 123539"},"PeriodicalIF":8.4000,"publicationDate":"2024-11-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Membrane Science","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0376738824011335","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0

Abstract

A novel nanofiber composite membrane with dual-mechanism enhanced energy efficiency for efficient photothermal membrane distillation was constructed, by in-situ growth of copper-based metal-organic framework (Cu-CAT) on the surface of polyamide 6 nanofiber membrane (Cu-CAT@PA6 NM) as hydrophilic photothermal layer, polystyrene nanofiber membrane doped with phase change capsule as heat storage and insulation layer, polyvinylidene fluoride tree-like nanofiber membrane as hydrophobic support layer. The spiny structure of Cu-CAT has high photothermal efficiency, and the surface temperature of the Cu-CAT@PA6 NM reaches 68 °C. The fluffy middle layer can store heat energy generated by the photothermal layer, and reduce the heat diffusion to the permeation side. This configuration collaboratively heightens the transmembrane temperature difference, improves the energy efficiency, and thus improves the permeation flux. Furthermore, the support layer confers the essential resistance to wettability and long-term stability for PMD. Under 1 kw·m−2 illumination, feed/permeation side temperature of 25 °C/20 °C, the photothermal phase change nanofiber composite membrane achieved a remarkable permeation flux of 1.60 kg m−2 h−1, coupled with a salt rejection rate of 99.99 %, and the energy utilization efficiency of 81.50 %. More importantly, after 7 days of continuous testing, the permeation flux remained consistently high at 1.15 kg m−2 h−1, with salt rejection maintaining above 99.99 %, demonstrating the membrane's durability.

Abstract Image

纳米纤维复合膜在光热膜蒸馏中的双机制能效提升
通过在聚酰胺6纳米纤维膜(Cu-CAT@PA6 NM)表面原位生长铜基金属有机框架(Cu-CAT)作为亲水光热层,聚苯乙烯纳米纤维膜掺杂相变胶囊作为储热保温层,聚偏氟乙烯树状纳米纤维膜作为疏水支撑层,构建了一种新型纳米纤维复合膜,具有双机制增强能效,可用于高效光热膜蒸馏。Cu-CAT 的刺状结构具有很高的光热效率,Cu-CAT@PA6 NM 的表面温度可达 68 ℃。蓬松的中间层可以储存光热层产生的热能,减少向渗透侧的热扩散。这种构造共同增大了跨膜温差,提高了能量效率,从而改善了渗透通量。此外,支撑层还为 PMD 提供了必要的抗湿润性和长期稳定性。在 1 kw-m-2 光照、进水/渗透侧温度为 25 °C/20 °C 的条件下,光热相变纳米纤维复合膜达到了 1.60 kg m-2 h-1 的显著渗透通量,同时盐分去除率为 99.99 %,能量利用效率为 81.50 %。更重要的是,经过 7 天的连续测试,渗透通量始终保持在 1.15 kg m-2 h-1 的高水平,盐分去除率保持在 99.99 % 以上,证明了该膜的耐用性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Membrane Science
Journal of Membrane Science 工程技术-高分子科学
CiteScore
17.10
自引率
17.90%
发文量
1031
审稿时长
2.5 months
期刊介绍: The Journal of Membrane Science is a publication that focuses on membrane systems and is aimed at academic and industrial chemists, chemical engineers, materials scientists, and membranologists. It publishes original research and reviews on various aspects of membrane transport, membrane formation/structure, fouling, module/process design, and processes/applications. The journal primarily focuses on the structure, function, and performance of non-biological membranes but also includes papers that relate to biological membranes. The Journal of Membrane Science publishes Full Text Papers, State-of-the-Art Reviews, Letters to the Editor, and Perspectives.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信