{"title":"Optimization of CTS thin film solar cell: A numerical investigation based on USP deposited thin films","authors":"Sabina Rahaman , Monoj Kumar Singha , Paramita Sarkar , M. Anantha Sunil , Kaustab Ghosh","doi":"10.1016/j.physb.2024.416751","DOIUrl":null,"url":null,"abstract":"<div><div>CTS (Cu<sub>2</sub>SnS<sub>3</sub>) can be used in the next generation of thin-film solar cells due to its non-toxicity, affordability, and natural availability. CTS has a direct bandgap, high absorption coefficient, making it an attractive and environmentally friendly choice for fabrication of solar cells. Ultrasonic spray pyrolysis is used to deposit CTS (absorber layer) and ZnS (buffer layer) films and they are characterized by XRD, SEM and UV–Vis spectroscopy. Based on experimental results, numerical simulation has been performed using SCAPS 1D. FTO/CTS/ZnS/Ag is the structure of device, where Ag act as an electrode. In this paper, a study is carried out to investigate the effects of thickness, doping concentrations in CTS and ZnS layer, working temperatures, bandgap variations, and defect densities on these solar cells. At the temperature of 300K, the proposed cell exhibits a power conversion efficiency of 8.25 %, open circuit voltage 0.4252V, short circuit current 24.82 mA/cm<sup>2</sup>, FF 78.18 % respectively.</div></div>","PeriodicalId":20116,"journal":{"name":"Physica B-condensed Matter","volume":"698 ","pages":"Article 416751"},"PeriodicalIF":2.8000,"publicationDate":"2024-11-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physica B-condensed Matter","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0921452624010925","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, CONDENSED MATTER","Score":null,"Total":0}
引用次数: 0
Abstract
CTS (Cu2SnS3) can be used in the next generation of thin-film solar cells due to its non-toxicity, affordability, and natural availability. CTS has a direct bandgap, high absorption coefficient, making it an attractive and environmentally friendly choice for fabrication of solar cells. Ultrasonic spray pyrolysis is used to deposit CTS (absorber layer) and ZnS (buffer layer) films and they are characterized by XRD, SEM and UV–Vis spectroscopy. Based on experimental results, numerical simulation has been performed using SCAPS 1D. FTO/CTS/ZnS/Ag is the structure of device, where Ag act as an electrode. In this paper, a study is carried out to investigate the effects of thickness, doping concentrations in CTS and ZnS layer, working temperatures, bandgap variations, and defect densities on these solar cells. At the temperature of 300K, the proposed cell exhibits a power conversion efficiency of 8.25 %, open circuit voltage 0.4252V, short circuit current 24.82 mA/cm2, FF 78.18 % respectively.
期刊介绍:
Physica B: Condensed Matter comprises all condensed matter and material physics that involve theoretical, computational and experimental work.
Papers should contain further developments and a proper discussion on the physics of experimental or theoretical results in one of the following areas:
-Magnetism
-Materials physics
-Nanostructures and nanomaterials
-Optics and optical materials
-Quantum materials
-Semiconductors
-Strongly correlated systems
-Superconductivity
-Surfaces and interfaces