{"title":"Exploration of Imbalanced Regression in state-of-health estimation of Lithium-ion batteries","authors":"Zhibin Zhao, Bingchen Liu, Fujin Wang, Shiyu Zheng, Qiuyu Yu, Zhi Zhai, Xuefeng Chen","doi":"10.1016/j.est.2024.114542","DOIUrl":null,"url":null,"abstract":"<div><div>The state of health (SOH) estimation for lithium-ion batteries based on deep learning (DL) has made great progress. However, due to different electrochemical compositions of lithium-ion batteries, different ways of conducting experiments and other factors, the degradation process of some batteries shows longer early degradation time and shorter later degradation time, resulting in a long-tailed distribution of degradation data. This leads to the problem of data imbalance in SOH estimation tasks, which affects the accuracy of SOH estimation. This article explores the long-tailed distribution phenomenon in the field of batteries and the corresponding imbalanced regression problem it brings to the estimation of battery SOH. In addition, a method for improving model performance is proposed. Specifically, we use a quadratic interpolation and standardization method to analyze the battery data to ensure the consistency of data features. By discretized analysis of continuous problems, the label distribution smoothing (LDS) method is applied to deep neural networks to analyze and solve this imbalanced regression problem. By convolution processing with the kernel function and label distribution, the weights corresponding to different labels are calculated, which improves the estimation accuracy. We conducted battery aging experiments and verified that the degradation data follows a long-tailed distribution. The effectiveness of the final method was validated on our experimental data and a publicly available dataset.</div></div>","PeriodicalId":15942,"journal":{"name":"Journal of energy storage","volume":"105 ","pages":""},"PeriodicalIF":8.9000,"publicationDate":"2024-11-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of energy storage","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2352152X24041288","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0
Abstract
The state of health (SOH) estimation for lithium-ion batteries based on deep learning (DL) has made great progress. However, due to different electrochemical compositions of lithium-ion batteries, different ways of conducting experiments and other factors, the degradation process of some batteries shows longer early degradation time and shorter later degradation time, resulting in a long-tailed distribution of degradation data. This leads to the problem of data imbalance in SOH estimation tasks, which affects the accuracy of SOH estimation. This article explores the long-tailed distribution phenomenon in the field of batteries and the corresponding imbalanced regression problem it brings to the estimation of battery SOH. In addition, a method for improving model performance is proposed. Specifically, we use a quadratic interpolation and standardization method to analyze the battery data to ensure the consistency of data features. By discretized analysis of continuous problems, the label distribution smoothing (LDS) method is applied to deep neural networks to analyze and solve this imbalanced regression problem. By convolution processing with the kernel function and label distribution, the weights corresponding to different labels are calculated, which improves the estimation accuracy. We conducted battery aging experiments and verified that the degradation data follows a long-tailed distribution. The effectiveness of the final method was validated on our experimental data and a publicly available dataset.
期刊介绍:
Journal of energy storage focusses on all aspects of energy storage, in particular systems integration, electric grid integration, modelling and analysis, novel energy storage technologies, sizing and management strategies, business models for operation of storage systems and energy storage developments worldwide.