A comparative study on exploring sputtered titanium nitride thin films for high-performance supercapacitors

IF 8.9 2区 工程技术 Q1 ENERGY & FUELS
Mahnoor Ahmed , Nisar Ahmed , Haseeb Ahmad , Shahid Bashir , Ramesh Subramaniam , Ghulam Ali
{"title":"A comparative study on exploring sputtered titanium nitride thin films for high-performance supercapacitors","authors":"Mahnoor Ahmed ,&nbsp;Nisar Ahmed ,&nbsp;Haseeb Ahmad ,&nbsp;Shahid Bashir ,&nbsp;Ramesh Subramaniam ,&nbsp;Ghulam Ali","doi":"10.1016/j.est.2024.114712","DOIUrl":null,"url":null,"abstract":"<div><div>Magnetron sputtered titanium nitride (TiN) thin films possessed desirable electrochemical and physical characteristics making them attractive candidates for supercapacitor electrodes. Herein, the electrochemical performance of TiN films prepared via direct and reactive sputtering methods is investigated as electrodes for supercapacitor. Microstructural analysis revealed distinct morphologies, topographies, and crystal structures for each film type, with reactively sputtered TiN (RS) displaying a pyramidal structure indicative of (111) orientation, whereas directly sputtered TiN (DS) exhibited a granular structure. Electrochemical techniques like cyclic voltammetry, galvanic charge-discharge, and electrochemical impedance spectroscopy clarified the charge storage mechanisms and capacitance behavior. RS exhibited a quasi-rectangular CV profile with pseudo-capacitive behavior with low charge transfer resistance and peak specific capacitance of 90 mF cm<sup>−2</sup> along with superior cyclic stability and ion conductivity. Supercapattery configuration was setup to validate those findings using reactive sputtered thin films. It demonstrated enhanced capacitance retention and low charge transfer resistance, highlighting their potential for practical applications in energy storage systems.</div></div>","PeriodicalId":15942,"journal":{"name":"Journal of energy storage","volume":"105 ","pages":"Article 114712"},"PeriodicalIF":8.9000,"publicationDate":"2024-11-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of energy storage","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2352152X24042981","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

Abstract

Magnetron sputtered titanium nitride (TiN) thin films possessed desirable electrochemical and physical characteristics making them attractive candidates for supercapacitor electrodes. Herein, the electrochemical performance of TiN films prepared via direct and reactive sputtering methods is investigated as electrodes for supercapacitor. Microstructural analysis revealed distinct morphologies, topographies, and crystal structures for each film type, with reactively sputtered TiN (RS) displaying a pyramidal structure indicative of (111) orientation, whereas directly sputtered TiN (DS) exhibited a granular structure. Electrochemical techniques like cyclic voltammetry, galvanic charge-discharge, and electrochemical impedance spectroscopy clarified the charge storage mechanisms and capacitance behavior. RS exhibited a quasi-rectangular CV profile with pseudo-capacitive behavior with low charge transfer resistance and peak specific capacitance of 90 mF cm−2 along with superior cyclic stability and ion conductivity. Supercapattery configuration was setup to validate those findings using reactive sputtered thin films. It demonstrated enhanced capacitance retention and low charge transfer resistance, highlighting their potential for practical applications in energy storage systems.
探索用于高性能超级电容器的溅射氮化钛薄膜的比较研究
磁控溅射氮化钛(TiN)薄膜具有理想的电化学和物理特性,是超级电容器电极的理想候选材料。本文研究了通过直接和反应溅射方法制备的氮化钛薄膜作为超级电容器电极的电化学性能。微观结构分析表明,每种类型的薄膜都具有不同的形态、拓扑结构和晶体结构,反应溅射 TiN(RS)显示出金字塔结构,表明其取向为(111),而直接溅射 TiN(DS)则显示出粒状结构。循环伏安法、电化学充放电法和电化学阻抗光谱法等电化学技术阐明了电荷存储机制和电容行为。RS 的 CV 曲线呈准矩形,具有伪电容行为,电荷转移电阻低,比电容峰值为 90 mF cm-2,同时具有优异的循环稳定性和离子传导性。为了验证这些发现,我们使用反应溅射薄膜设置了超级电池配置。它显示出更强的电容保持能力和更低的电荷转移电阻,突出了其在储能系统中的实际应用潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of energy storage
Journal of energy storage Energy-Renewable Energy, Sustainability and the Environment
CiteScore
11.80
自引率
24.50%
发文量
2262
审稿时长
69 days
期刊介绍: Journal of energy storage focusses on all aspects of energy storage, in particular systems integration, electric grid integration, modelling and analysis, novel energy storage technologies, sizing and management strategies, business models for operation of storage systems and energy storage developments worldwide.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信