Enhancing the properties of PEG-based solid polymer electrolytes with TiO2 nanoparticles for potassium ion batteries

IF 3.8 Q2 CHEMISTRY, PHYSICAL
Anji Reddy Polu , Faisal Islam Chowdhury , Pramod K. Singh , Markus Diantoro , Firdaus Mohamad Hamzah
{"title":"Enhancing the properties of PEG-based solid polymer electrolytes with TiO2 nanoparticles for potassium ion batteries","authors":"Anji Reddy Polu ,&nbsp;Faisal Islam Chowdhury ,&nbsp;Pramod K. Singh ,&nbsp;Markus Diantoro ,&nbsp;Firdaus Mohamad Hamzah","doi":"10.1016/j.chphi.2024.100788","DOIUrl":null,"url":null,"abstract":"<div><div>In this study, nanocomposite solid polymer electrolytes (NSPEs) based on poly(ethylene glycol) (PEG), potassium nitrate (KNO<sub>3</sub>), and titanium oxide (TiO<sub>2</sub>) nanoparticles were synthesized using a solution casting technique. The impact of various TiO<sub>2</sub> nanoparticle concentrations on the structural, thermal, electrical and electrochemical properties of the NSPEs was investigated. X-ray diffraction analysis revealed a decrease in the degree of crystallinity of the PEG–KNO<sub>3</sub> electrolyte upon the addition of TiO<sub>2</sub> nanoparticles. Differential scanning calorimetry measurements showed a decrease in the melting temperature of the NSPE with the incorporation of 6 wt.% TiO<sub>2</sub> nanoparticle concentration. The ionic conductivity of the NSPEs increased with TiO<sub>2</sub> concentration up to 6 wt.% (σ = 5.94 × 10<sup>−5</sup> S/cm), beyond which a decrease was observed. Transference number measurements confirmed the dominance of ionic charge transport in the NSPE. A solid-state electrochemical cell fabricated using the optimal NSPE composition (80PEG–20KNO<sub>3</sub>–6 wt.% TiO<sub>2</sub>) exhibited promising discharge performance under a constant load of 100 kΩ.</div></div>","PeriodicalId":9758,"journal":{"name":"Chemical Physics Impact","volume":"10 ","pages":"Article 100788"},"PeriodicalIF":3.8000,"publicationDate":"2024-11-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemical Physics Impact","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2667022424003323","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

In this study, nanocomposite solid polymer electrolytes (NSPEs) based on poly(ethylene glycol) (PEG), potassium nitrate (KNO3), and titanium oxide (TiO2) nanoparticles were synthesized using a solution casting technique. The impact of various TiO2 nanoparticle concentrations on the structural, thermal, electrical and electrochemical properties of the NSPEs was investigated. X-ray diffraction analysis revealed a decrease in the degree of crystallinity of the PEG–KNO3 electrolyte upon the addition of TiO2 nanoparticles. Differential scanning calorimetry measurements showed a decrease in the melting temperature of the NSPE with the incorporation of 6 wt.% TiO2 nanoparticle concentration. The ionic conductivity of the NSPEs increased with TiO2 concentration up to 6 wt.% (σ = 5.94 × 10−5 S/cm), beyond which a decrease was observed. Transference number measurements confirmed the dominance of ionic charge transport in the NSPE. A solid-state electrochemical cell fabricated using the optimal NSPE composition (80PEG–20KNO3–6 wt.% TiO2) exhibited promising discharge performance under a constant load of 100 kΩ.

Abstract Image

在钾离子电池中使用 TiO2 纳米粒子增强 PEG 基固体聚合物电解质的性能
本研究采用溶液浇铸技术合成了基于聚乙二醇(PEG)、硝酸钾(KNO3)和氧化钛(TiO2)纳米颗粒的纳米复合固体聚合物电解质(NSPEs)。研究了不同浓度的 TiO2 纳米粒子对 NSPE 的结构、热、电和电化学性能的影响。X 射线衍射分析表明,加入 TiO2 纳米粒子后,PEG-KNO3 电解质的结晶度降低。差示扫描量热法测量结果表明,加入 6 wt.% 浓度的 TiO2 纳米粒子后,NSPE 的熔化温度降低。NSPE 的离子电导率随着 TiO2 浓度的增加而增加,最高可达 6 wt.%(σ = 5.94 × 10-5 S/cm),超过 6 wt.%后离子电导率有所下降。转移数测量证实了离子电荷传输在 NSPE 中的主导地位。使用最佳 NSPE 成分(80PEG-20KNO3-6 wt.% TiO2)制造的固态电化学电池在 100 kΩ 的恒定负载下表现出良好的放电性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Chemical Physics Impact
Chemical Physics Impact Materials Science-Materials Science (miscellaneous)
CiteScore
2.60
自引率
0.00%
发文量
65
审稿时长
46 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信