{"title":"Performance analysis of NH3/CO2 cascade refrigeration system using CO2 centrifugal compressor with gas bearing","authors":"Zilong Wang, Yuqing Zuo, Yuandong Li, Guangbin Liu, Qichao Yang, Yuanyang Zhao, Liansheng Li","doi":"10.1016/j.ijrefrig.2024.11.020","DOIUrl":null,"url":null,"abstract":"<div><div>NH<sub>3</sub>/CO<sub>2</sub> cascade refrigeration systems have a wide application prospect in the field of refrigeration, and using efficient centrifugal compressors is an important research direction. Considering the complex regulation process under various operating conditions, using centrifugal compressors for the low-temperature stage first is a feasible solution. In this paper, a mathematical model of a CO<sub>2</sub> centrifugal compressor with gas bearing is established, and its performance is obtained through simulation. The CO<sub>2</sub> centrifugal compressor shows good performance, and the maximum isentropic efficiency is about 84.5%. The refrigerating capacity, cooling motor mass flow rate, exergy efficiency, and isentropic efficiency of compressor decrease with the intermediate temperature, but the maximum COP of 1.46 is obtained. As the condensing temperature increases, the isentropic efficiency of the CO<sub>2</sub> compressor increases, but the maximum COP, exergy efficiency, cooling motor mass flow rate, and refrigeration capacity decrease. The higher COP and intermediate temperature, larger refrigeration capacity and mass flow rate for motor cooling are shown for the larger evaporating temperature, but the low exergy efficiency, isentropic efficiency of CO<sub>2</sub> compressor are obtained.</div></div>","PeriodicalId":14274,"journal":{"name":"International Journal of Refrigeration-revue Internationale Du Froid","volume":"170 ","pages":"Pages 44-59"},"PeriodicalIF":3.5000,"publicationDate":"2024-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Refrigeration-revue Internationale Du Froid","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0140700724004092","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0
Abstract
NH3/CO2 cascade refrigeration systems have a wide application prospect in the field of refrigeration, and using efficient centrifugal compressors is an important research direction. Considering the complex regulation process under various operating conditions, using centrifugal compressors for the low-temperature stage first is a feasible solution. In this paper, a mathematical model of a CO2 centrifugal compressor with gas bearing is established, and its performance is obtained through simulation. The CO2 centrifugal compressor shows good performance, and the maximum isentropic efficiency is about 84.5%. The refrigerating capacity, cooling motor mass flow rate, exergy efficiency, and isentropic efficiency of compressor decrease with the intermediate temperature, but the maximum COP of 1.46 is obtained. As the condensing temperature increases, the isentropic efficiency of the CO2 compressor increases, but the maximum COP, exergy efficiency, cooling motor mass flow rate, and refrigeration capacity decrease. The higher COP and intermediate temperature, larger refrigeration capacity and mass flow rate for motor cooling are shown for the larger evaporating temperature, but the low exergy efficiency, isentropic efficiency of CO2 compressor are obtained.
期刊介绍:
The International Journal of Refrigeration is published for the International Institute of Refrigeration (IIR) by Elsevier. It is essential reading for all those wishing to keep abreast of research and industrial news in refrigeration, air conditioning and associated fields. This is particularly important in these times of rapid introduction of alternative refrigerants and the emergence of new technology. The journal has published special issues on alternative refrigerants and novel topics in the field of boiling, condensation, heat pumps, food refrigeration, carbon dioxide, ammonia, hydrocarbons, magnetic refrigeration at room temperature, sorptive cooling, phase change materials and slurries, ejector technology, compressors, and solar cooling.
As well as original research papers the International Journal of Refrigeration also includes review articles, papers presented at IIR conferences, short reports and letters describing preliminary results and experimental details, and letters to the Editor on recent areas of discussion and controversy. Other features include forthcoming events, conference reports and book reviews.
Papers are published in either English or French with the IIR news section in both languages.