Cooperative control strategy of variable evaporation temperature and variable superheat degree for a VRF system to improve temperature stability in multiple rooms
{"title":"Cooperative control strategy of variable evaporation temperature and variable superheat degree for a VRF system to improve temperature stability in multiple rooms","authors":"Haomin Cao , Dawei Zhuang , Guoliang Ding , Shunquan Li , Zhigang Huang , Yanpo Shao , Hao Zhang , Dongyu Chen","doi":"10.1016/j.ijrefrig.2024.11.017","DOIUrl":null,"url":null,"abstract":"<div><div>The energy consumption of variable refrigerant flow (VRF) systems can be reduced by adopting the variable evaporation temperature and constant superheat degree (VECS) control strategy instead of constant evaporation temperature and constant superheat degree (CECS) control strategy. However, the constant superheat degree control strategy may weaken the adjustment ability of cooling capacity of indoor units, and result in obvious room temperature fluctuations. In order to decrease room temperature fluctuations and reduce energy consumption simultaneously, a cooperative control strategy of variable evaporation temperature and variable superheat degree (VEVS) is proposed, i.e. one indoor unit is chosen to be controlled by variable evaporation temperature and the rest of the indoor units are controlled by variable superheat degrees. In this control strategy, the target value of evaporation temperature is the lowest value among the upper limits of the evaporation temperatures of all indoor units, and the target values of the superheat degrees of indoor units are predicted according to the cooling demands of rooms. Comparative experiments on room temperature fluctuation and energy consumption among the control strategies of CECS, VECS and VEVS are done. It is shown that both the control strategies of VECS and VEVS achieve smaller room temperature fluctuation and lower energy consumption than those of CECS; compared with the VECS control strategy, the average room temperature fluctuation of the VEVS control strategy is decreased from 1.1 °C to 0.5 °C due to variable superheat degree, and the energy consumption of the VEVS control strategy is reduced by 4.4 %.</div></div>","PeriodicalId":14274,"journal":{"name":"International Journal of Refrigeration-revue Internationale Du Froid","volume":"170 ","pages":"Pages 1-18"},"PeriodicalIF":3.5000,"publicationDate":"2024-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Refrigeration-revue Internationale Du Froid","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0140700724004018","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0
Abstract
The energy consumption of variable refrigerant flow (VRF) systems can be reduced by adopting the variable evaporation temperature and constant superheat degree (VECS) control strategy instead of constant evaporation temperature and constant superheat degree (CECS) control strategy. However, the constant superheat degree control strategy may weaken the adjustment ability of cooling capacity of indoor units, and result in obvious room temperature fluctuations. In order to decrease room temperature fluctuations and reduce energy consumption simultaneously, a cooperative control strategy of variable evaporation temperature and variable superheat degree (VEVS) is proposed, i.e. one indoor unit is chosen to be controlled by variable evaporation temperature and the rest of the indoor units are controlled by variable superheat degrees. In this control strategy, the target value of evaporation temperature is the lowest value among the upper limits of the evaporation temperatures of all indoor units, and the target values of the superheat degrees of indoor units are predicted according to the cooling demands of rooms. Comparative experiments on room temperature fluctuation and energy consumption among the control strategies of CECS, VECS and VEVS are done. It is shown that both the control strategies of VECS and VEVS achieve smaller room temperature fluctuation and lower energy consumption than those of CECS; compared with the VECS control strategy, the average room temperature fluctuation of the VEVS control strategy is decreased from 1.1 °C to 0.5 °C due to variable superheat degree, and the energy consumption of the VEVS control strategy is reduced by 4.4 %.
期刊介绍:
The International Journal of Refrigeration is published for the International Institute of Refrigeration (IIR) by Elsevier. It is essential reading for all those wishing to keep abreast of research and industrial news in refrigeration, air conditioning and associated fields. This is particularly important in these times of rapid introduction of alternative refrigerants and the emergence of new technology. The journal has published special issues on alternative refrigerants and novel topics in the field of boiling, condensation, heat pumps, food refrigeration, carbon dioxide, ammonia, hydrocarbons, magnetic refrigeration at room temperature, sorptive cooling, phase change materials and slurries, ejector technology, compressors, and solar cooling.
As well as original research papers the International Journal of Refrigeration also includes review articles, papers presented at IIR conferences, short reports and letters describing preliminary results and experimental details, and letters to the Editor on recent areas of discussion and controversy. Other features include forthcoming events, conference reports and book reviews.
Papers are published in either English or French with the IIR news section in both languages.