{"title":"A new error analysis of a linearized Euler Galerkin scheme for Schrödinger equation with cubic nonlinearity","authors":"Huaijun Yang","doi":"10.1016/j.aml.2024.109401","DOIUrl":null,"url":null,"abstract":"<div><div>In this paper, a linearized Euler Galerkin scheme is studied and the unconditionally optimal error estimate in <span><math><msup><mrow><mi>L</mi></mrow><mrow><mn>2</mn></mrow></msup></math></span>-norm is obtained for Schrödinger equation with cubic nonlinearity without any time-step restriction. The key to the analysis is to bound the <span><math><msup><mrow><mi>H</mi></mrow><mrow><mn>1</mn></mrow></msup></math></span>-norm between the numerical solution and the Ritz projection of the exact solution by mathematical induction for two cases rather than the error splitting technique used in the previous work. Finally, some numerical results are presented to confirm the theoretical analysis.</div></div>","PeriodicalId":55497,"journal":{"name":"Applied Mathematics Letters","volume":"162 ","pages":"Article 109401"},"PeriodicalIF":2.9000,"publicationDate":"2024-11-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Mathematics Letters","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S089396592400421X","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
In this paper, a linearized Euler Galerkin scheme is studied and the unconditionally optimal error estimate in -norm is obtained for Schrödinger equation with cubic nonlinearity without any time-step restriction. The key to the analysis is to bound the -norm between the numerical solution and the Ritz projection of the exact solution by mathematical induction for two cases rather than the error splitting technique used in the previous work. Finally, some numerical results are presented to confirm the theoretical analysis.
期刊介绍:
The purpose of Applied Mathematics Letters is to provide a means of rapid publication for important but brief applied mathematical papers. The brief descriptions of any work involving a novel application or utilization of mathematics, or a development in the methodology of applied mathematics is a potential contribution for this journal. This journal''s focus is on applied mathematics topics based on differential equations and linear algebra. Priority will be given to submissions that are likely to appeal to a wide audience.