{"title":"SAV unconditional stable estimate of parallel decoupled stabilized finite element algorithm for the fully mixed Stokes–Darcy problems","authors":"Chunchi Liu , Yizhong Sun , Jiaping Yu","doi":"10.1016/j.aml.2024.109393","DOIUrl":null,"url":null,"abstract":"<div><div>This paper investigates a fully parallel decoupled approach of the discrete stabilized finite element method for the time-dependent Stokes–Darcy problem. By introducing an auxiliary function, we rigorously demonstrate that the parallel algorithm is unconditionally stable.</div></div>","PeriodicalId":55497,"journal":{"name":"Applied Mathematics Letters","volume":"162 ","pages":"Article 109393"},"PeriodicalIF":2.9000,"publicationDate":"2024-11-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Mathematics Letters","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0893965924004130","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
This paper investigates a fully parallel decoupled approach of the discrete stabilized finite element method for the time-dependent Stokes–Darcy problem. By introducing an auxiliary function, we rigorously demonstrate that the parallel algorithm is unconditionally stable.
期刊介绍:
The purpose of Applied Mathematics Letters is to provide a means of rapid publication for important but brief applied mathematical papers. The brief descriptions of any work involving a novel application or utilization of mathematics, or a development in the methodology of applied mathematics is a potential contribution for this journal. This journal''s focus is on applied mathematics topics based on differential equations and linear algebra. Priority will be given to submissions that are likely to appeal to a wide audience.