Multiple solutions of the Ambrosetti–Rabinowitz problem

IF 2.9 2区 数学 Q1 MATHEMATICS, APPLIED
Ziliang Yang , Jiabao Su , Mingzheng Sun
{"title":"Multiple solutions of the Ambrosetti–Rabinowitz problem","authors":"Ziliang Yang ,&nbsp;Jiabao Su ,&nbsp;Mingzheng Sun","doi":"10.1016/j.aml.2024.109390","DOIUrl":null,"url":null,"abstract":"<div><div>In this paper, we consider the following elliptic problem <span><math><mrow><mfenced><mrow><mtable><mtr><mtd><mo>−</mo><mi>Δ</mi><mi>u</mi><mo>=</mo><mi>f</mi><mrow><mo>(</mo><mi>x</mi><mo>,</mo><mi>u</mi><mo>)</mo></mrow><mo>,</mo><mspace></mspace><mspace></mspace></mtd><mtd><mtext>in</mtext><mspace></mspace><mspace></mspace><mi>Ω</mi><mo>,</mo></mtd></mtr><mtr><mtd><mi>u</mi><mo>=</mo><mn>0</mn><mo>,</mo><mspace></mspace><mspace></mspace></mtd><mtd><mtext>on</mtext><mspace></mspace><mspace></mspace><mi>∂</mi><mi>Ω</mi><mo>,</mo></mtd></mtr></mtable></mrow></mfenced><mrow><mo>(</mo><mi>P</mi><mo>)</mo></mrow></mrow></math></span> where the nonlinearity <span><math><mi>f</mi></math></span> satisfies the Ambrosetti–Rabinowitz condition. Using an additional growth condition of <span><math><mi>f</mi></math></span> at a bounded region, we can obtain five nontrivial solutions of <span><math><mrow><mo>(</mo><mi>P</mi><mo>)</mo></mrow></math></span> by applying homological linking arguments and Morse theory.</div></div>","PeriodicalId":55497,"journal":{"name":"Applied Mathematics Letters","volume":"162 ","pages":"Article 109390"},"PeriodicalIF":2.9000,"publicationDate":"2024-11-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Mathematics Letters","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0893965924004105","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we consider the following elliptic problem Δu=f(x,u),inΩ,u=0,onΩ,(P) where the nonlinearity f satisfies the Ambrosetti–Rabinowitz condition. Using an additional growth condition of f at a bounded region, we can obtain five nontrivial solutions of (P) by applying homological linking arguments and Morse theory.
安布罗塞蒂-拉宾诺维茨问题的多种解决方案
本文考虑以下椭圆问题 -Δu=f(x,u),inΩ,u=0,on∂Ω,(P) 其中非线性 f 满足 Ambrosetti-Rabinowitz 条件。利用 f 在有界区域的附加增长条件,我们可以通过应用同调联系论证和莫尔斯理论得到 (P) 的五个非微观解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Applied Mathematics Letters
Applied Mathematics Letters 数学-应用数学
CiteScore
7.70
自引率
5.40%
发文量
347
审稿时长
10 days
期刊介绍: The purpose of Applied Mathematics Letters is to provide a means of rapid publication for important but brief applied mathematical papers. The brief descriptions of any work involving a novel application or utilization of mathematics, or a development in the methodology of applied mathematics is a potential contribution for this journal. This journal''s focus is on applied mathematics topics based on differential equations and linear algebra. Priority will be given to submissions that are likely to appeal to a wide audience.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信