Development of Nix/Mg1–x-MOF-74 for highly efficient CO2/N2 separation

Q3 Energy
Xin ZHANG , Guoqiang LI , Mei HONG , Hongyan BAN , Lixia YANG , Xingchen LIU , Feng LI , Ekaterina Vladimirovna Matus , Congming LI , Lei LI
{"title":"Development of Nix/Mg1–x-MOF-74 for highly efficient CO2/N2 separation","authors":"Xin ZHANG ,&nbsp;Guoqiang LI ,&nbsp;Mei HONG ,&nbsp;Hongyan BAN ,&nbsp;Lixia YANG ,&nbsp;Xingchen LIU ,&nbsp;Feng LI ,&nbsp;Ekaterina Vladimirovna Matus ,&nbsp;Congming LI ,&nbsp;Lei LI","doi":"10.1016/S1872-5813(24)60464-0","DOIUrl":null,"url":null,"abstract":"<div><div>To enhance the separation selectivity of Mg-MOF-74 towards CO<sub>2</sub> in a CO<sub>2</sub>/N<sub>2</sub> mixture, a series of Mg-MOF-74 and Ni<sub><em>x</em></sub>/Mg<sub>1–<em>x</em></sub>-MOF-74 adsorbents were prepared by solvothermal synthesis in this paper. It was found that the adsorption capacity of Mg-MOF-74 for CO<sub>2</sub> could be effectively increased by optimizing the amount of acetic acid. On this basis, the bimetal MOF-74 adsorbent was prepared by metal modification. The multi-component dynamic adsorption penetration analysis was utilized to examine the CO<sub>2</sub> adsorption capacity and CO<sub>2</sub>/N<sub>2</sub> selectivity of the diverse adsorbent materials. The results showed that Ni<sub>0.11</sub>/Mg<sub>0.89</sub>-MOF-74 showed a CO<sub>2</sub> adsorption capacity of 7.02 mmol/g under pure CO<sub>2</sub> atmosphere and had a selectivity of 20.50 for CO<sub>2</sub>/N<sub>2</sub> under 15% CO<sub>2</sub>/85% N<sub>2</sub> conditions, which was 10.2% and 18.02% higher than that of Mg-MOF-74 respectively. Combining XPS, SEM and N<sub>2</sub> adsorption-desorption characterization analysis, it was attributed to the effect of the more stable unsaturated metal sites Ni into the Mg-MOF-74 on the pore structure and the synergistic interaction between the two metals. Density Functional Theory (DFT) simulations revealed that the synergistic interaction between modulated the electrostatic potential strength and gradient of the material, which was more favorable for the adsorption of CO<sub>2</sub> molecules with small diameters and large quadrupole moment. In addition, the Ni<sub>0.11</sub>/Mg<sub>0.89</sub>-MOF-74 showed commendable cyclic stability, underscoring its promising potential for practical applications.</div></div>","PeriodicalId":15956,"journal":{"name":"燃料化学学报","volume":"52 11","pages":"Pages 1745-1758"},"PeriodicalIF":0.0000,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"燃料化学学报","FirstCategoryId":"1087","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1872581324604640","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Energy","Score":null,"Total":0}
引用次数: 0

Abstract

To enhance the separation selectivity of Mg-MOF-74 towards CO2 in a CO2/N2 mixture, a series of Mg-MOF-74 and Nix/Mg1–x-MOF-74 adsorbents were prepared by solvothermal synthesis in this paper. It was found that the adsorption capacity of Mg-MOF-74 for CO2 could be effectively increased by optimizing the amount of acetic acid. On this basis, the bimetal MOF-74 adsorbent was prepared by metal modification. The multi-component dynamic adsorption penetration analysis was utilized to examine the CO2 adsorption capacity and CO2/N2 selectivity of the diverse adsorbent materials. The results showed that Ni0.11/Mg0.89-MOF-74 showed a CO2 adsorption capacity of 7.02 mmol/g under pure CO2 atmosphere and had a selectivity of 20.50 for CO2/N2 under 15% CO2/85% N2 conditions, which was 10.2% and 18.02% higher than that of Mg-MOF-74 respectively. Combining XPS, SEM and N2 adsorption-desorption characterization analysis, it was attributed to the effect of the more stable unsaturated metal sites Ni into the Mg-MOF-74 on the pore structure and the synergistic interaction between the two metals. Density Functional Theory (DFT) simulations revealed that the synergistic interaction between modulated the electrostatic potential strength and gradient of the material, which was more favorable for the adsorption of CO2 molecules with small diameters and large quadrupole moment. In addition, the Ni0.11/Mg0.89-MOF-74 showed commendable cyclic stability, underscoring its promising potential for practical applications.
开发用于高效 CO2/N2 分离的 Nix/Mg1-x-MOF-74
为了提高 Mg-MOF-74 对 CO2/N2 混合物中二氧化碳的分离选择性,本文采用溶热合成法制备了一系列 Mg-MOF-74 和 Nix/Mg1-x-MOF-74 吸附剂。研究发现,通过优化醋酸的用量,可有效提高 Mg-MOF-74 对 CO2 的吸附能力。在此基础上,通过金属改性制备了双金属 MOF-74 吸附剂。利用多组分动态吸附渗透分析法考察了不同吸附材料的 CO2 吸附能力和 CO2/N2 选择性。结果表明,Ni0.11/Mg0.89-MOF-74 在纯二氧化碳气氛下的二氧化碳吸附容量为 7.02 mmol/g,在 15% CO2/85% N2 条件下对 CO2/N2 的选择性为 20.50,分别比 Mg-MOF-74 高出 10.2% 和 18.02%。结合 XPS、SEM 和 N2 吸附-解吸表征分析,这归因于 Mg-MOF-74 中更稳定的不饱和金属位点 Ni 对孔隙结构的影响以及两种金属之间的协同作用。密度泛函理论(DFT)模拟显示,两种金属之间的协同作用调节了材料的静电势强度和梯度,更有利于吸附直径小、四极矩大的 CO2 分子。此外,Ni0.11/Mg0.89-MOF-74 还表现出了值得称道的循环稳定性,突显了其在实际应用中的巨大潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
燃料化学学报
燃料化学学报 Chemical Engineering-Chemical Engineering (all)
CiteScore
2.80
自引率
0.00%
发文量
5825
期刊介绍: Journal of Fuel Chemistry and Technology (Ranliao Huaxue Xuebao) is a Chinese Academy of Sciences(CAS) journal started in 1956, sponsored by the Chinese Chemical Society and the Institute of Coal Chemistry, Chinese Academy of Sciences(CAS). The journal is published bimonthly by Science Press in China and widely distributed in about 20 countries. Journal of Fuel Chemistry and Technology publishes reports of both basic and applied research in the chemistry and chemical engineering of many energy sources, including that involved in the nature, processing and utilization of coal, petroleum, oil shale, natural gas, biomass and synfuels, as well as related subjects of increasing interest such as C1 chemistry, pollutions control and new catalytic materials. Types of publications include original research articles, short communications, research notes and reviews. Both domestic and international contributors are welcome. Manuscripts written in Chinese or English will be accepted. Additional English titles, abstracts and key words should be included in Chinese manuscripts. All manuscripts are subject to critical review by the editorial committee, which is composed of about 10 foreign and 50 Chinese experts in fuel science. Journal of Fuel Chemistry and Technology has been a source of primary research work in fuel chemistry as a Chinese core scientific periodical.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信