In-situ photodeposition of co-catalyst Ni2P on CdS for photocatalytic conversion of ethanol for synergistic hydrogen production

Q3 Energy
Yiming LIU , Jingjing MIAO , Wanggang ZHANG , Aili WEI , Jian WANG
{"title":"In-situ photodeposition of co-catalyst Ni2P on CdS for photocatalytic conversion of ethanol for synergistic hydrogen production","authors":"Yiming LIU ,&nbsp;Jingjing MIAO ,&nbsp;Wanggang ZHANG ,&nbsp;Aili WEI ,&nbsp;Jian WANG","doi":"10.1016/S1872-5813(24)60493-7","DOIUrl":null,"url":null,"abstract":"<div><div>In this study, Ni<sub>2</sub>P/CdS composites were constructed by depositing non-precious metal co-catalyst Ni<sub>2</sub>P on a one-dimensional network of CdS using a simple <em>in-situ</em> photodeposition method. The prepared photocatalysts promoted the decomposition of ethanol into high-value-added products while generating hydrogen. The composite photoanodes loaded with the Ni<sub>2</sub>P co-catalysts showed significantly higher ethanol conversion and hydrogen production in the visible light region, which was almost three times higher than that of pure CdS. The main products of photocatalytic ethanol production are acetaldehyde (AA) and 2,3-butanediol (2,3-BDA). Compared with CdS, the selectivity of the composite photocatalysts for converting ethanol to acetaldehyde was significantly improved (62% to 78%). Characterization of the prepared photocatalysts confirmed that the loading of Ni<sub>2</sub>P co-catalysts on CdS not only broadened the optical region of the catalysts for trapping light but also effectively promoted the separation and transfer of charge carriers, which significantly improved the photocatalytic efficiency of ethanol conversion and hydrogen production in the catalysts. It has been proven through Electron Paramagnetic Resonance testing that loading a Ni<sub>2</sub>P co-catalyst on CdS is beneficial for the adsorption of hydroxyethyl radicals (*CH(OH)CH<sub>3</sub>), thereby further improving the selectivity of acetaldehyde. This study plays an important role in the rational design of composite catalyst structures and the introduction of co-catalysts to improve catalyst performance, promote green chemistry, advocate a low-carbon society, and promote sustainable development.</div></div>","PeriodicalId":15956,"journal":{"name":"燃料化学学报","volume":"52 11","pages":"Pages 1629-1640"},"PeriodicalIF":0.0000,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"燃料化学学报","FirstCategoryId":"1087","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1872581324604937","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Energy","Score":null,"Total":0}
引用次数: 0

Abstract

In this study, Ni2P/CdS composites were constructed by depositing non-precious metal co-catalyst Ni2P on a one-dimensional network of CdS using a simple in-situ photodeposition method. The prepared photocatalysts promoted the decomposition of ethanol into high-value-added products while generating hydrogen. The composite photoanodes loaded with the Ni2P co-catalysts showed significantly higher ethanol conversion and hydrogen production in the visible light region, which was almost three times higher than that of pure CdS. The main products of photocatalytic ethanol production are acetaldehyde (AA) and 2,3-butanediol (2,3-BDA). Compared with CdS, the selectivity of the composite photocatalysts for converting ethanol to acetaldehyde was significantly improved (62% to 78%). Characterization of the prepared photocatalysts confirmed that the loading of Ni2P co-catalysts on CdS not only broadened the optical region of the catalysts for trapping light but also effectively promoted the separation and transfer of charge carriers, which significantly improved the photocatalytic efficiency of ethanol conversion and hydrogen production in the catalysts. It has been proven through Electron Paramagnetic Resonance testing that loading a Ni2P co-catalyst on CdS is beneficial for the adsorption of hydroxyethyl radicals (*CH(OH)CH3), thereby further improving the selectivity of acetaldehyde. This study plays an important role in the rational design of composite catalyst structures and the introduction of co-catalysts to improve catalyst performance, promote green chemistry, advocate a low-carbon society, and promote sustainable development.
在 CdS 上原位光沉积辅助催化剂 Ni2P,用于乙醇的光催化转化以协同制氢
本研究采用简单的原位光沉积法,在一维 CdS 网络上沉积非贵金属助催化剂 Ni2P,从而构建了 Ni2P/CdS 复合材料。所制备的光催化剂可促进乙醇分解成高附加值产品,同时产生氢气。负载了 Ni2P 助催化剂的复合光阳极在可见光区域的乙醇转化率和产氢量显著提高,几乎是纯 CdS 的三倍。光催化乙醇生产的主要产物是乙醛(AA)和 2,3-丁二醇(2,3-BDA)。与 CdS 相比,复合光催化剂将乙醇转化为乙醛的选择性显著提高(从 62% 提高到 78%)。对所制备光催化剂的表征证实,在 CdS 上负载 Ni2P 助催化剂不仅拓宽了催化剂捕获光的光学区域,还有效促进了电荷载流子的分离和转移,从而显著提高了催化剂中乙醇转化和制氢的光催化效率。通过电子顺磁共振测试证明,在 CdS 上负载 Ni2P 助催化剂有利于羟乙基(*CH(OH)CH3)的吸附,从而进一步提高乙醛的选择性。该研究对于合理设计复合催化剂结构,引入助催化剂,提高催化剂性能,推动绿色化学发展,倡导低碳社会,促进可持续发展具有重要作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
燃料化学学报
燃料化学学报 Chemical Engineering-Chemical Engineering (all)
CiteScore
2.80
自引率
0.00%
发文量
5825
期刊介绍: Journal of Fuel Chemistry and Technology (Ranliao Huaxue Xuebao) is a Chinese Academy of Sciences(CAS) journal started in 1956, sponsored by the Chinese Chemical Society and the Institute of Coal Chemistry, Chinese Academy of Sciences(CAS). The journal is published bimonthly by Science Press in China and widely distributed in about 20 countries. Journal of Fuel Chemistry and Technology publishes reports of both basic and applied research in the chemistry and chemical engineering of many energy sources, including that involved in the nature, processing and utilization of coal, petroleum, oil shale, natural gas, biomass and synfuels, as well as related subjects of increasing interest such as C1 chemistry, pollutions control and new catalytic materials. Types of publications include original research articles, short communications, research notes and reviews. Both domestic and international contributors are welcome. Manuscripts written in Chinese or English will be accepted. Additional English titles, abstracts and key words should be included in Chinese manuscripts. All manuscripts are subject to critical review by the editorial committee, which is composed of about 10 foreign and 50 Chinese experts in fuel science. Journal of Fuel Chemistry and Technology has been a source of primary research work in fuel chemistry as a Chinese core scientific periodical.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信