Non-thermal plasma-catalytic reforming of tar over Ni-based catalysts

Q3 Energy
Jinchao HU , Tian CHANG , Mingyan XIAO , Tian ZHANG , Xue HE
{"title":"Non-thermal plasma-catalytic reforming of tar over Ni-based catalysts","authors":"Jinchao HU ,&nbsp;Tian CHANG ,&nbsp;Mingyan XIAO ,&nbsp;Tian ZHANG ,&nbsp;Xue HE","doi":"10.1016/S1872-5813(24)60475-5","DOIUrl":null,"url":null,"abstract":"<div><div>In the process of biomass gasification to produce syngas (H<sub>2</sub>/CO), the production of tar as a by-product causes environmental pollution and hinders the development of gasification technology. The combination of non-thermal plasma and nickel-based catalysts can take advantage of the low reaction temperature of plasma and the high selectivity of catalyst to transform tar into syngas. However, carbon deposition of nickel particles in the reforming process easily causes catalyst deactivation, so designing and modifying the catalyst to improve its carbon resistance is the key to solving the catalyst deactivation problem. In this paper, the deactivation mechanism of nickel-based catalysts in the non-thermal plasma-catalytic reforming of tar system, the design and modification of catalysts to improve their carbon resistance, the types of the non-thermal plasma reactor and its tar reforming mechanism, the synergistic effects of non-thermal plasma and catalysts are reviewed. The research prospect of non-thermal plasma-catalytic reforming of tar system is also discussed. This paper provides a reference for the design and development of nickel-based catalysts in the non-thermal plasma-catalytic reforming of tar system.</div></div>","PeriodicalId":15956,"journal":{"name":"燃料化学学报","volume":"52 11","pages":"Pages 1563-1579"},"PeriodicalIF":0.0000,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"燃料化学学报","FirstCategoryId":"1087","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1872581324604755","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Energy","Score":null,"Total":0}
引用次数: 0

Abstract

In the process of biomass gasification to produce syngas (H2/CO), the production of tar as a by-product causes environmental pollution and hinders the development of gasification technology. The combination of non-thermal plasma and nickel-based catalysts can take advantage of the low reaction temperature of plasma and the high selectivity of catalyst to transform tar into syngas. However, carbon deposition of nickel particles in the reforming process easily causes catalyst deactivation, so designing and modifying the catalyst to improve its carbon resistance is the key to solving the catalyst deactivation problem. In this paper, the deactivation mechanism of nickel-based catalysts in the non-thermal plasma-catalytic reforming of tar system, the design and modification of catalysts to improve their carbon resistance, the types of the non-thermal plasma reactor and its tar reforming mechanism, the synergistic effects of non-thermal plasma and catalysts are reviewed. The research prospect of non-thermal plasma-catalytic reforming of tar system is also discussed. This paper provides a reference for the design and development of nickel-based catalysts in the non-thermal plasma-catalytic reforming of tar system.
在镍基催化剂上对焦油进行非热等离子催化重整
在生物质气化生产合成气(H2/CO)的过程中,副产品焦油的产生会造成环境污染,阻碍气化技术的发展。非热等离子体与镍基催化剂的结合可利用等离子体的低反应温度和催化剂的高选择性将焦油转化为合成气。然而,镍颗粒在转化过程中的碳沉积容易导致催化剂失活,因此设计和改造催化剂以提高其抗碳性能是解决催化剂失活问题的关键。本文综述了焦油非热等离子体催化重整体系中镍基催化剂的失活机理、提高催化剂耐碳性的设计与改性、非热等离子体反应器的类型及其焦油重整机理、非热等离子体与催化剂的协同效应。还讨论了焦油非热等离子体催化重整系统的研究前景。本文为焦油非热等离子体催化重整系统中镍基催化剂的设计和开发提供了参考。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
燃料化学学报
燃料化学学报 Chemical Engineering-Chemical Engineering (all)
CiteScore
2.80
自引率
0.00%
发文量
5825
期刊介绍: Journal of Fuel Chemistry and Technology (Ranliao Huaxue Xuebao) is a Chinese Academy of Sciences(CAS) journal started in 1956, sponsored by the Chinese Chemical Society and the Institute of Coal Chemistry, Chinese Academy of Sciences(CAS). The journal is published bimonthly by Science Press in China and widely distributed in about 20 countries. Journal of Fuel Chemistry and Technology publishes reports of both basic and applied research in the chemistry and chemical engineering of many energy sources, including that involved in the nature, processing and utilization of coal, petroleum, oil shale, natural gas, biomass and synfuels, as well as related subjects of increasing interest such as C1 chemistry, pollutions control and new catalytic materials. Types of publications include original research articles, short communications, research notes and reviews. Both domestic and international contributors are welcome. Manuscripts written in Chinese or English will be accepted. Additional English titles, abstracts and key words should be included in Chinese manuscripts. All manuscripts are subject to critical review by the editorial committee, which is composed of about 10 foreign and 50 Chinese experts in fuel science. Journal of Fuel Chemistry and Technology has been a source of primary research work in fuel chemistry as a Chinese core scientific periodical.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信