Yu Wang , Zhenfeng Shao , Tao Lu , Xiao Huang , Jiaming Wang , Zhizheng Zhang , Xiaolong Zuo
{"title":"Lightweight remote sensing super-resolution with multi-scale graph attention network","authors":"Yu Wang , Zhenfeng Shao , Tao Lu , Xiao Huang , Jiaming Wang , Zhizheng Zhang , Xiaolong Zuo","doi":"10.1016/j.patcog.2024.111178","DOIUrl":null,"url":null,"abstract":"<div><div>Remote Sensing Super-Resolution (RS-SR) constitutes a pivotal component in the domain of remote sensing image analysis, aimed at enhancing the spatial resolution of low-resolution imagery. Recent advancements have seen deep learning techniques achieving substantial progress in the RS-SR field. Notably, Graph Neural Networks (GNNs) have emerged as a potent mechanism for processing remote sensing images, adept at elucidating the intricate inter-pixel relationships within images. Nevertheless, a prevalent limitation among existing GNN-based methodologies is their disregard for the high computational demands, which circumscribes their applicability in environments with limited computational resources. This paper introduces a streamlined RS-SR framework, leveraging a Multi-Scale Graph Attention Network (MSGAN), designed to effectively balance computational efficiency with high performance. The core of MSGAN is a novel multi-scale graph attention module, integrating graph attention block and multi-scale lattice block structures, engineered to comprehensively assimilate both localized and extensive spatial information in remote sensing images. This enhances the framework’s overall efficacy and resilience in RS-SR tasks. Comparative experimental analyses demonstrate that MSGAN delivers competitive results against state-of-the-art methods while reducing parameter count and computational overhead, presenting a promising avenue for deployment in scenarios with limited computational resources.</div></div>","PeriodicalId":49713,"journal":{"name":"Pattern Recognition","volume":"160 ","pages":"Article 111178"},"PeriodicalIF":7.5000,"publicationDate":"2024-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Pattern Recognition","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0031320324009294","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0
Abstract
Remote Sensing Super-Resolution (RS-SR) constitutes a pivotal component in the domain of remote sensing image analysis, aimed at enhancing the spatial resolution of low-resolution imagery. Recent advancements have seen deep learning techniques achieving substantial progress in the RS-SR field. Notably, Graph Neural Networks (GNNs) have emerged as a potent mechanism for processing remote sensing images, adept at elucidating the intricate inter-pixel relationships within images. Nevertheless, a prevalent limitation among existing GNN-based methodologies is their disregard for the high computational demands, which circumscribes their applicability in environments with limited computational resources. This paper introduces a streamlined RS-SR framework, leveraging a Multi-Scale Graph Attention Network (MSGAN), designed to effectively balance computational efficiency with high performance. The core of MSGAN is a novel multi-scale graph attention module, integrating graph attention block and multi-scale lattice block structures, engineered to comprehensively assimilate both localized and extensive spatial information in remote sensing images. This enhances the framework’s overall efficacy and resilience in RS-SR tasks. Comparative experimental analyses demonstrate that MSGAN delivers competitive results against state-of-the-art methods while reducing parameter count and computational overhead, presenting a promising avenue for deployment in scenarios with limited computational resources.
期刊介绍:
The field of Pattern Recognition is both mature and rapidly evolving, playing a crucial role in various related fields such as computer vision, image processing, text analysis, and neural networks. It closely intersects with machine learning and is being applied in emerging areas like biometrics, bioinformatics, multimedia data analysis, and data science. The journal Pattern Recognition, established half a century ago during the early days of computer science, has since grown significantly in scope and influence.