Michelle Meagher , Alex Metcalf , Mark Vigliotti , S. Alex Ramsey , Walter Prentice , Luca Cohen , Shivani Upadhyaya , Melissa S. Roth , Nanette R. Boyle
{"title":"Genome-scale metabolic model accurately predicts fermentation of glucose by Chromochloris zofingiensis","authors":"Michelle Meagher , Alex Metcalf , Mark Vigliotti , S. Alex Ramsey , Walter Prentice , Luca Cohen , Shivani Upadhyaya , Melissa S. Roth , Nanette R. Boyle","doi":"10.1016/j.algal.2024.103805","DOIUrl":null,"url":null,"abstract":"<div><div>Algae have the potential to be sources of renewable fuels and chemicals. One particular strain, <em>Chromochloris zofingiensis</em>, is of interest due to the co-production of triacylglycerols (TAGs) and astaxanthin, a valuable nutraceutical. To aid in future engineering efforts, we have developed the first genome-scale metabolic model on <em>C. zofingiensis</em>, <em>i</em>Czof1915. This model includes 1915 genes, 3449 metabolic reactions, and 2682 metabolites across 9 cellular compartments. We performed detailed biomass composition analysis for three growth conditions: autotrophic, mixotrophic and heterotrophic and used this data to develop biomass formation equations for each growth condition. The completed model was then used to predict flux distributions for each growth condition; interestingly, for heterotrophic growth, the model predicts the excretion of fermentation products due to overflow metabolism. We confirmed this experimentally <em>via</em> metabolomics of spent medium and fermentation product assays. An <em>in silico</em> gene essentiality analysis was also performed on this model to evaluate metabolism robustness in each growth condition. In this work, we present the first genome-scale metabolic model of <em>C. zofingiensis</em> and demonstrate its use predicting metabolic activity in different growth conditions, setting up a foundation for future metabolic engineering studies in this organism.</div></div>","PeriodicalId":7855,"journal":{"name":"Algal Research-Biomass Biofuels and Bioproducts","volume":"84 ","pages":"Article 103805"},"PeriodicalIF":4.6000,"publicationDate":"2024-11-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Algal Research-Biomass Biofuels and Bioproducts","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S221192642400417X","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Algae have the potential to be sources of renewable fuels and chemicals. One particular strain, Chromochloris zofingiensis, is of interest due to the co-production of triacylglycerols (TAGs) and astaxanthin, a valuable nutraceutical. To aid in future engineering efforts, we have developed the first genome-scale metabolic model on C. zofingiensis, iCzof1915. This model includes 1915 genes, 3449 metabolic reactions, and 2682 metabolites across 9 cellular compartments. We performed detailed biomass composition analysis for three growth conditions: autotrophic, mixotrophic and heterotrophic and used this data to develop biomass formation equations for each growth condition. The completed model was then used to predict flux distributions for each growth condition; interestingly, for heterotrophic growth, the model predicts the excretion of fermentation products due to overflow metabolism. We confirmed this experimentally via metabolomics of spent medium and fermentation product assays. An in silico gene essentiality analysis was also performed on this model to evaluate metabolism robustness in each growth condition. In this work, we present the first genome-scale metabolic model of C. zofingiensis and demonstrate its use predicting metabolic activity in different growth conditions, setting up a foundation for future metabolic engineering studies in this organism.
期刊介绍:
Algal Research is an international phycology journal covering all areas of emerging technologies in algae biology, biomass production, cultivation, harvesting, extraction, bioproducts, biorefinery, engineering, and econometrics. Algae is defined to include cyanobacteria, microalgae, and protists and symbionts of interest in biotechnology. The journal publishes original research and reviews for the following scope: algal biology, including but not exclusive to: phylogeny, biodiversity, molecular traits, metabolic regulation, and genetic engineering, algal cultivation, e.g. phototrophic systems, heterotrophic systems, and mixotrophic systems, algal harvesting and extraction systems, biotechnology to convert algal biomass and components into biofuels and bioproducts, e.g., nutraceuticals, pharmaceuticals, animal feed, plastics, etc. algal products and their economic assessment