ECVT imaging and CFD simulation of particle flow in a 90° bend

IF 4.5 2区 工程技术 Q2 ENGINEERING, CHEMICAL
Xichen Gu, Daoye Yang, Aofang Guo, Mengtao Zhang, Shuxian Zhang
{"title":"ECVT imaging and CFD simulation of particle flow in a 90° bend","authors":"Xichen Gu,&nbsp;Daoye Yang,&nbsp;Aofang Guo,&nbsp;Mengtao Zhang,&nbsp;Shuxian Zhang","doi":"10.1016/j.powtec.2024.120476","DOIUrl":null,"url":null,"abstract":"<div><div>Gas-solid two-phase flow characteristics in a 90° bend within a pneumatic conveying system are critical for design and performance optimization, impacting conveying efficiency and system safety. Electrical Capacitance Volumetric Tomography (ECVT) and Computational Fluid Dynamics (CFD) simulations were employed in this study to investigate the flow characteristics in the bend. The ECVT system for bends was validated through static tests. A setup with a 36 mm inner diameter was constructed for high-speed 3D imaging of 0.9 mm quartz particles. Flow patterns, solid-phase concentration, particle velocity spectra, and mass flow rate were analyzed under various gas velocities. The Euler-Lagrange method and SST K-ω model were used to simulate particle flow and pipe wall erosion numerically. Results indicate diverse flow patterns across different gas velocities, where moderate turbulence enhances efficiency and limits erosion. This study offers an experimental basis for predicting and controlling particle motion, providing scientific guidance for optimizing pneumatic systems.</div></div>","PeriodicalId":407,"journal":{"name":"Powder Technology","volume":"451 ","pages":"Article 120476"},"PeriodicalIF":4.5000,"publicationDate":"2024-11-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Powder Technology","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0032591024011203","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Gas-solid two-phase flow characteristics in a 90° bend within a pneumatic conveying system are critical for design and performance optimization, impacting conveying efficiency and system safety. Electrical Capacitance Volumetric Tomography (ECVT) and Computational Fluid Dynamics (CFD) simulations were employed in this study to investigate the flow characteristics in the bend. The ECVT system for bends was validated through static tests. A setup with a 36 mm inner diameter was constructed for high-speed 3D imaging of 0.9 mm quartz particles. Flow patterns, solid-phase concentration, particle velocity spectra, and mass flow rate were analyzed under various gas velocities. The Euler-Lagrange method and SST K-ω model were used to simulate particle flow and pipe wall erosion numerically. Results indicate diverse flow patterns across different gas velocities, where moderate turbulence enhances efficiency and limits erosion. This study offers an experimental basis for predicting and controlling particle motion, providing scientific guidance for optimizing pneumatic systems.

Abstract Image

90° 弯道中粒子流的 ECVT 成像和 CFD 模拟
气力输送系统 90° 弯道中的气固两相流特性对于设计和性能优化至关重要,会影响输送效率和系统安全。本研究采用电容体积断层扫描(ECVT)和计算流体动力学(CFD)模拟来研究弯管中的流动特性。通过静态测试验证了用于弯管的 ECVT 系统。构建了一个内径为 36 毫米的装置,用于对 0.9 毫米的石英颗粒进行高速三维成像。分析了各种气体速度下的流动模式、固相浓度、颗粒速度谱和质量流量。采用欧拉-拉格朗日法和 SST K-ω 模型对颗粒流动和管壁侵蚀进行了数值模拟。结果表明,不同气速下的流动模式各不相同,适度的湍流可提高效率并限制侵蚀。这项研究为预测和控制颗粒运动提供了实验基础,为优化气动系统提供了科学指导。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Powder Technology
Powder Technology 工程技术-工程:化工
CiteScore
9.90
自引率
15.40%
发文量
1047
审稿时长
46 days
期刊介绍: Powder Technology is an International Journal on the Science and Technology of Wet and Dry Particulate Systems. Powder Technology publishes papers on all aspects of the formation of particles and their characterisation and on the study of systems containing particulate solids. No limitation is imposed on the size of the particles, which may range from nanometre scale, as in pigments or aerosols, to that of mined or quarried materials. The following list of topics is not intended to be comprehensive, but rather to indicate typical subjects which fall within the scope of the journal's interests: Formation and synthesis of particles by precipitation and other methods. Modification of particles by agglomeration, coating, comminution and attrition. Characterisation of the size, shape, surface area, pore structure and strength of particles and agglomerates (including the origins and effects of inter particle forces). Packing, failure, flow and permeability of assemblies of particles. Particle-particle interactions and suspension rheology. Handling and processing operations such as slurry flow, fluidization, pneumatic conveying. Interactions between particles and their environment, including delivery of particulate products to the body. Applications of particle technology in production of pharmaceuticals, chemicals, foods, pigments, structural, and functional materials and in environmental and energy related matters. For materials-oriented contributions we are looking for articles revealing the effect of particle/powder characteristics (size, morphology and composition, in that order) on material performance or functionality and, ideally, comparison to any industrial standard.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信