Xiaoyan Zhang, Guangyu Gao, Zhenwu Fu, Yang Li, Bo Han
{"title":"A frozen Levenberg-Marquardt-Kaczmarz method with convex penalty terms and two-point gradient strategy for ill-posed problems","authors":"Xiaoyan Zhang, Guangyu Gao, Zhenwu Fu, Yang Li, Bo Han","doi":"10.1016/j.apnum.2024.11.014","DOIUrl":null,"url":null,"abstract":"<div><div>In this paper, we present a frozen iteratively regularized approach for solving ill-posed problems and conduct a thorough analysis of its performance. This method involves incorporating Nesterov's acceleration strategy into the Levenberg-Marquardt-Kaczmarz method and maintaining a constant Fréchet derivative of <span><math><msub><mrow><mi>F</mi></mrow><mrow><mi>i</mi></mrow></msub></math></span> at an initial approximation solution <span><math><msub><mrow><mi>x</mi></mrow><mrow><mn>0</mn></mrow></msub></math></span> throughout the iterative process, which called the frozen strategy. Moreover, convex functions are employed as penalty terms to capture the distinctive features of solutions. We establish convergence and regularization analysis by leveraging some classical assumptions and properties of convex functions. These theoretical findings are further supported by a number of numerical studies, which demonstrate the efficacy of our approach. Additionally, to verify the impact of initial values on the accuracy of reconstruction, the data-driven strategy is adopted in the third numerical example for comparison.</div></div>","PeriodicalId":8199,"journal":{"name":"Applied Numerical Mathematics","volume":"209 ","pages":"Pages 187-207"},"PeriodicalIF":2.2000,"publicationDate":"2024-11-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Numerical Mathematics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0168927424003222","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
In this paper, we present a frozen iteratively regularized approach for solving ill-posed problems and conduct a thorough analysis of its performance. This method involves incorporating Nesterov's acceleration strategy into the Levenberg-Marquardt-Kaczmarz method and maintaining a constant Fréchet derivative of at an initial approximation solution throughout the iterative process, which called the frozen strategy. Moreover, convex functions are employed as penalty terms to capture the distinctive features of solutions. We establish convergence and regularization analysis by leveraging some classical assumptions and properties of convex functions. These theoretical findings are further supported by a number of numerical studies, which demonstrate the efficacy of our approach. Additionally, to verify the impact of initial values on the accuracy of reconstruction, the data-driven strategy is adopted in the third numerical example for comparison.
期刊介绍:
The purpose of the journal is to provide a forum for the publication of high quality research and tutorial papers in computational mathematics. In addition to the traditional issues and problems in numerical analysis, the journal also publishes papers describing relevant applications in such fields as physics, fluid dynamics, engineering and other branches of applied science with a computational mathematics component. The journal strives to be flexible in the type of papers it publishes and their format. Equally desirable are:
(i) Full papers, which should be complete and relatively self-contained original contributions with an introduction that can be understood by the broad computational mathematics community. Both rigorous and heuristic styles are acceptable. Of particular interest are papers about new areas of research, in which other than strictly mathematical arguments may be important in establishing a basis for further developments.
(ii) Tutorial review papers, covering some of the important issues in Numerical Mathematics, Scientific Computing and their Applications. The journal will occasionally publish contributions which are larger than the usual format for regular papers.
(iii) Short notes, which present specific new results and techniques in a brief communication.