Electrochemical recycling of recycled concrete powder: Selective recovery of calcium and silica to enable sustainable construction materials

IF 12.4 Q1 ENVIRONMENTAL SCIENCES
Zheng Fang , Guangqi Xiong , Zongxuan Shao , Shuai Zhou , Guangfeng Ou , Lei Liu , Michio Suzuki , Chong Wang , Yuya Sakai
{"title":"Electrochemical recycling of recycled concrete powder: Selective recovery of calcium and silica to enable sustainable construction materials","authors":"Zheng Fang ,&nbsp;Guangqi Xiong ,&nbsp;Zongxuan Shao ,&nbsp;Shuai Zhou ,&nbsp;Guangfeng Ou ,&nbsp;Lei Liu ,&nbsp;Michio Suzuki ,&nbsp;Chong Wang ,&nbsp;Yuya Sakai","doi":"10.1016/j.resenv.2024.100182","DOIUrl":null,"url":null,"abstract":"<div><div>Rapid urbanization produces billions of tons of concrete waste annually, with recycled concrete powder (RCP) posing significant challenges due to its high porosity and limited reusability. To overcome RCP’s inherent limitations and maximize resource utilization, we developed a novel “Recycled Concrete Powder Electrolyzer” for selective recovery of key components. This electrochemical method efficiently extracted Ca<sup>2+</sup> ions from RCP, achieving a 96% calcium extraction efficiency comparable to acid leaching. The process produced high-purity portlandite (94% purity; 65.58% yield) with crystal sizes below <span><math><mrow><mn>30</mn><mspace></mspace><mi>μ</mi><mi>m</mi></mrow></math></span>, ideal for cement manufacturing, while also recovering fine sand powder and silica-containing products. A Ca(NO<sub>3</sub>)<sub>2</sub> electrolyte enhanced Ca<sup>2+</sup> migration and prevented membrane fouling, resulting in lower energy consumption compared to the NaNO<sub>3</sub> system. By converting RCP into a carbon-free cement precursor and recovering valuable components, this approach demonstrates the feasibility of transforming problematic waste into sustainable construction materials. It offers a circular economy solution for concrete waste recycling, reducing landfill burden while providing a low-emission alternative for cement production.</div></div>","PeriodicalId":34479,"journal":{"name":"Resources Environment and Sustainability","volume":"18 ","pages":"Article 100182"},"PeriodicalIF":12.4000,"publicationDate":"2024-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Resources Environment and Sustainability","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666916124000355","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Rapid urbanization produces billions of tons of concrete waste annually, with recycled concrete powder (RCP) posing significant challenges due to its high porosity and limited reusability. To overcome RCP’s inherent limitations and maximize resource utilization, we developed a novel “Recycled Concrete Powder Electrolyzer” for selective recovery of key components. This electrochemical method efficiently extracted Ca2+ ions from RCP, achieving a 96% calcium extraction efficiency comparable to acid leaching. The process produced high-purity portlandite (94% purity; 65.58% yield) with crystal sizes below 30μm, ideal for cement manufacturing, while also recovering fine sand powder and silica-containing products. A Ca(NO3)2 electrolyte enhanced Ca2+ migration and prevented membrane fouling, resulting in lower energy consumption compared to the NaNO3 system. By converting RCP into a carbon-free cement precursor and recovering valuable components, this approach demonstrates the feasibility of transforming problematic waste into sustainable construction materials. It offers a circular economy solution for concrete waste recycling, reducing landfill burden while providing a low-emission alternative for cement production.

Abstract Image

回收混凝土粉末的电化学再循环:选择性回收钙和硅,实现可持续建筑材料
快速的城市化进程每年会产生数十亿吨混凝土废料,而再生混凝土粉(RCP)因其孔隙率高、可再利用性有限而面临巨大挑战。为了克服回收混凝土粉的固有局限性并最大限度地提高资源利用率,我们开发了一种新型 "回收混凝土粉电解器",用于选择性回收关键成分。这种电化学方法可有效提取 RCP 中的 Ca2+ 离子,钙提取效率高达 96%,与酸浸法相当。该工艺生产出晶体尺寸小于 30μm 的高纯度硅灰石(纯度 94%;产率 65.58%),是水泥生产的理想原料,同时还回收了细砂粉末和含硅产品。与 NaNO3 系统相比,Ca(NO3)2 电解质增强了 Ca2+ 的迁移,防止了膜堵塞,从而降低了能耗。通过将 RCP 转化为无碳水泥前体并回收有价值的成分,这种方法证明了将问题废物转化为可持续建筑材料的可行性。它为混凝土废物回收提供了一种循环经济解决方案,在减少垃圾填埋负担的同时,还为水泥生产提供了一种低排放替代品。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Resources Environment and Sustainability
Resources Environment and Sustainability Environmental Science-Environmental Science (miscellaneous)
CiteScore
15.10
自引率
0.00%
发文量
41
审稿时长
33 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信