Integrated multi-objective optimization of a horizontal evaporator structure in domestic refrigerators: Comparison between the semi-empirical model and GMDH neural networks for enhanced pareto frontiers

IF 6.1 2区 工程技术 Q2 ENERGY & FUELS
Chenxi Ni , Haihong Huang , Peipei Cui , Qingdi Ke , Shiyao Tan , Kim Tiow Ooi , Zhifeng Liu
{"title":"Integrated multi-objective optimization of a horizontal evaporator structure in domestic refrigerators: Comparison between the semi-empirical model and GMDH neural networks for enhanced pareto frontiers","authors":"Chenxi Ni ,&nbsp;Haihong Huang ,&nbsp;Peipei Cui ,&nbsp;Qingdi Ke ,&nbsp;Shiyao Tan ,&nbsp;Kim Tiow Ooi ,&nbsp;Zhifeng Liu","doi":"10.1016/j.applthermaleng.2024.124949","DOIUrl":null,"url":null,"abstract":"<div><div>In this paper, an Integrated Multi-Objective Optimization for optimising the horizontal evaporator structure of a domestic refrigerator is proposed by comparing the semi-empirical formulation model with the Group Method of Data Handling (GMDH) neural network model. Using STAR-CCM+ for 3D simulation and Amesim for a 1D system model, it examines the pressure drop, flow rate, and heat transfer of a horizontally finned tubes evaporator with trapezoidal fins. It compares the adaptability of a semi-empirical formula model and the GMDH model. The semi-empirical formulas uses row distance and fin pitch to model air-side flow rate and pressure drop, while the GMDH models uses six design parameters (tube distance, row distance, tube outer diameter, fin pitch, number of units, and fan speed) for its calculations. The semi-empirical models and GMDH models employ multi-objective optimization algorithms with friction factor (<em>f</em>) and heat transfer coefficient (<em>j</em>) as objectives. The design Pareto fronts of both methods do not overlap, creating a comprehensive Pareto front. The unification of these Pareto fronts provides a comprehensive design space to analyze. The evaluation using LINMAP, TOPSIS, and Shannon’s entropy methods showed that LINMAP and TOPSIS provided superior solutions for the more linear semi-empirical model. In contrast, the Shannon entropy method offered a more robust solution for the highly nonlinear and complex GMDH model, making it more suitable for conditions with high uncertainty. The optimal design point in the GMDH model was selected using the Shannon entropy method, with <em>f</em> and <em>j</em> values of 0.174 and 19.430, respectively.</div></div>","PeriodicalId":8201,"journal":{"name":"Applied Thermal Engineering","volume":"260 ","pages":"Article 124949"},"PeriodicalIF":6.1000,"publicationDate":"2024-11-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Thermal Engineering","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1359431124026176","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, an Integrated Multi-Objective Optimization for optimising the horizontal evaporator structure of a domestic refrigerator is proposed by comparing the semi-empirical formulation model with the Group Method of Data Handling (GMDH) neural network model. Using STAR-CCM+ for 3D simulation and Amesim for a 1D system model, it examines the pressure drop, flow rate, and heat transfer of a horizontally finned tubes evaporator with trapezoidal fins. It compares the adaptability of a semi-empirical formula model and the GMDH model. The semi-empirical formulas uses row distance and fin pitch to model air-side flow rate and pressure drop, while the GMDH models uses six design parameters (tube distance, row distance, tube outer diameter, fin pitch, number of units, and fan speed) for its calculations. The semi-empirical models and GMDH models employ multi-objective optimization algorithms with friction factor (f) and heat transfer coefficient (j) as objectives. The design Pareto fronts of both methods do not overlap, creating a comprehensive Pareto front. The unification of these Pareto fronts provides a comprehensive design space to analyze. The evaluation using LINMAP, TOPSIS, and Shannon’s entropy methods showed that LINMAP and TOPSIS provided superior solutions for the more linear semi-empirical model. In contrast, the Shannon entropy method offered a more robust solution for the highly nonlinear and complex GMDH model, making it more suitable for conditions with high uncertainty. The optimal design point in the GMDH model was selected using the Shannon entropy method, with f and j values of 0.174 and 19.430, respectively.
家用冰箱水平蒸发器结构的综合多目标优化:半经验模型与 GMDH 神经网络在增强帕累托前沿方面的比较
本文通过比较半经验公式模型和数据处理组法(GMDH)神经网络模型,提出了一种用于优化家用冰箱水平蒸发器结构的综合多目标优化方法。使用 STAR-CCM+ 进行三维模拟,使用 Amesim 建立一维系统模型,研究了带梯形翅片的水平翅片管蒸发器的压降、流速和传热。它比较了半经验公式模型和 GMDH 模型的适应性。半经验公式使用排距和翅片间距来模拟空气侧流速和压降,而 GMDH 模型则使用六个设计参数(管距、排距、管外径、翅片间距、单元数和风扇速度)进行计算。半经验模型和 GMDH 模型采用多目标优化算法,以摩擦系数(f)和传热系数(j)为目标。这两种方法的设计帕累托前沿没有重叠,形成了一个综合帕累托前沿。这些帕累托前沿的统一为分析提供了一个全面的设计空间。使用 LINMAP、TOPSIS 和香农熵方法进行的评估表明,LINMAP 和 TOPSIS 为线性半经验模型提供了更优的解决方案。相比之下,香农熵法为高度非线性和复杂的 GMDH 模型提供了更稳健的解决方案,使其更适用于不确定性较高的条件。采用香农熵法选出了 GMDH 模型的最佳设计点,其 f 值和 j 值分别为 0.174 和 19.430。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Applied Thermal Engineering
Applied Thermal Engineering 工程技术-工程:机械
CiteScore
11.30
自引率
15.60%
发文量
1474
审稿时长
57 days
期刊介绍: Applied Thermal Engineering disseminates novel research related to the design, development and demonstration of components, devices, equipment, technologies and systems involving thermal processes for the production, storage, utilization and conservation of energy, with a focus on engineering application. The journal publishes high-quality and high-impact Original Research Articles, Review Articles, Short Communications and Letters to the Editor on cutting-edge innovations in research, and recent advances or issues of interest to the thermal engineering community.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信