Yan Huang , Xiaotian Chu , Hao Zhou , Huijing Zhao , Yongliang Xie , Zuo-Yu Sun
{"title":"Combined startup strategy of high temperature proton exchange membrane fuel cells","authors":"Yan Huang , Xiaotian Chu , Hao Zhou , Huijing Zhao , Yongliang Xie , Zuo-Yu Sun","doi":"10.1016/j.ijhydene.2024.11.361","DOIUrl":null,"url":null,"abstract":"<div><div>High-temperature proton exchange membrane fuel cells (HT-PEMFCs) are one of the key focuses in hydrogen energy research. Achieving rapid operational temperature is a critical challenge. This study combines experimental and numerical methods to investigate combined start-up strategies for HT-PEMFCs. Initially, a single-cell HT-PEMFC was constructed to obtain polarization curves. Subsequently, a three-dimensional multi-physics numerical model was developed to determine start-up times and maximum temperature differences, proposing four start-up strategies: increasing inlet gas temperature, enhancing heating plate power, combined heating without and with incorporating heat recovery. Results indicate that increasing inlet gas temperature and using a heating plate each have limitations in start-up time and membrane temperature uniformity. The optimal strategy, combining 150 °C inlet gas and a 1200 W/m<sup>2</sup> heating plate for startup, minimizes energy consumption. Additionally, incorporating heat recovery, both energy consumption and startup time can be reduced compared to scenarios without heat recovery, regardless of whether the priority is given to energy consumption or startup time.</div></div>","PeriodicalId":337,"journal":{"name":"International Journal of Hydrogen Energy","volume":"96 ","pages":"Pages 771-782"},"PeriodicalIF":8.1000,"publicationDate":"2024-11-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Hydrogen Energy","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0360319924050523","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
High-temperature proton exchange membrane fuel cells (HT-PEMFCs) are one of the key focuses in hydrogen energy research. Achieving rapid operational temperature is a critical challenge. This study combines experimental and numerical methods to investigate combined start-up strategies for HT-PEMFCs. Initially, a single-cell HT-PEMFC was constructed to obtain polarization curves. Subsequently, a three-dimensional multi-physics numerical model was developed to determine start-up times and maximum temperature differences, proposing four start-up strategies: increasing inlet gas temperature, enhancing heating plate power, combined heating without and with incorporating heat recovery. Results indicate that increasing inlet gas temperature and using a heating plate each have limitations in start-up time and membrane temperature uniformity. The optimal strategy, combining 150 °C inlet gas and a 1200 W/m2 heating plate for startup, minimizes energy consumption. Additionally, incorporating heat recovery, both energy consumption and startup time can be reduced compared to scenarios without heat recovery, regardless of whether the priority is given to energy consumption or startup time.
期刊介绍:
The objective of the International Journal of Hydrogen Energy is to facilitate the exchange of new ideas, technological advancements, and research findings in the field of Hydrogen Energy among scientists and engineers worldwide. This journal showcases original research, both analytical and experimental, covering various aspects of Hydrogen Energy. These include production, storage, transmission, utilization, enabling technologies, environmental impact, economic considerations, and global perspectives on hydrogen and its carriers such as NH3, CH4, alcohols, etc.
The utilization aspect encompasses various methods such as thermochemical (combustion), photochemical, electrochemical (fuel cells), and nuclear conversion of hydrogen, hydrogen isotopes, and hydrogen carriers into thermal, mechanical, and electrical energies. The applications of these energies can be found in transportation (including aerospace), industrial, commercial, and residential sectors.