Distributionally robust optimal configuration of battery energy storage system considering nodal RoCoF security constraints

IF 8.9 2区 工程技术 Q1 ENERGY & FUELS
Danyang Xu, Zhigang Wu, Lin Guan
{"title":"Distributionally robust optimal configuration of battery energy storage system considering nodal RoCoF security constraints","authors":"Danyang Xu,&nbsp;Zhigang Wu,&nbsp;Lin Guan","doi":"10.1016/j.est.2024.114707","DOIUrl":null,"url":null,"abstract":"<div><div>The large-scale integration of renewable energy source (RES) exacerbates net load fluctuations, reduces system inertia, limits frequency response capabilities, and leads to uneven spatial distribution of inertia resources. To ensure the economic and safe operation of the system, we propose a distributionally robust optimal configuration scheme of battery energy storage system (BESS) considering nodal RoCoF security constraints to address these issues. First, we describe and model the dynamic frequency response characteristics after disturbances, derive the expressions for the system frequency nadir and maximum nodal RoCoF (MN-RoCoF). Second, we address net load uncertainty using the distributionally robust chance constrained (DRCC) approach and incorporate frequency security constraints into the BESS configuration optimization model, embedding the short-term system operation model into the long-term BESS planning. Then, to tackle the highly nonlinear MN-RoCoF constraint, we propose a divide and conquer-based support vector machine (D&amp;C-SVM), to extract the linear relationship between the BESS virtual inertia constant and MN-RoCoF, reformulating the proposed scheme into a mixed-integer second-order cone programming (MISOCP). Finally, we conducted case studies on the IEEE 39-bus and 118-bus test systems. The results verify that the proposed configuration scheme can ensure that the RoCoF at all nodes remains below 1 Hz/s under the preset disturbances. The proposed D&amp;C-SVM demonstrate 99 % accuracy in managing the nonlinear MN-RoCoF constraint. Moreover, the uncertainty in net load is well managed, with all chance constraints satisfied with a confidence level of over 95 %.</div></div>","PeriodicalId":15942,"journal":{"name":"Journal of energy storage","volume":"104 ","pages":"Article 114707"},"PeriodicalIF":8.9000,"publicationDate":"2024-11-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of energy storage","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2352152X24042932","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

Abstract

The large-scale integration of renewable energy source (RES) exacerbates net load fluctuations, reduces system inertia, limits frequency response capabilities, and leads to uneven spatial distribution of inertia resources. To ensure the economic and safe operation of the system, we propose a distributionally robust optimal configuration scheme of battery energy storage system (BESS) considering nodal RoCoF security constraints to address these issues. First, we describe and model the dynamic frequency response characteristics after disturbances, derive the expressions for the system frequency nadir and maximum nodal RoCoF (MN-RoCoF). Second, we address net load uncertainty using the distributionally robust chance constrained (DRCC) approach and incorporate frequency security constraints into the BESS configuration optimization model, embedding the short-term system operation model into the long-term BESS planning. Then, to tackle the highly nonlinear MN-RoCoF constraint, we propose a divide and conquer-based support vector machine (D&C-SVM), to extract the linear relationship between the BESS virtual inertia constant and MN-RoCoF, reformulating the proposed scheme into a mixed-integer second-order cone programming (MISOCP). Finally, we conducted case studies on the IEEE 39-bus and 118-bus test systems. The results verify that the proposed configuration scheme can ensure that the RoCoF at all nodes remains below 1 Hz/s under the preset disturbances. The proposed D&C-SVM demonstrate 99 % accuracy in managing the nonlinear MN-RoCoF constraint. Moreover, the uncertainty in net load is well managed, with all chance constraints satisfied with a confidence level of over 95 %.
考虑节点 RoCoF 安全约束的电池储能系统分布式稳健优化配置
可再生能源(RES)的大规模集成加剧了净负荷波动,降低了系统惯性,限制了频率响应能力,并导致惯性资源空间分布不均。为确保系统的经济和安全运行,我们提出了一种考虑节点 RoCoF 安全约束的分布稳健型电池储能系统(BESS)优化配置方案来解决这些问题。首先,我们对扰动后的动态频率响应特性进行了描述和建模,推导出了系统频率最低点和最大节点 RoCoF(MN-RoCoF)的表达式。其次,我们使用分布式鲁棒机会约束(DRCC)方法解决净负荷不确定性问题,并将频率安全约束纳入 BESS 配置优化模型,将短期系统运行模型嵌入长期 BESS 规划中。然后,针对高度非线性的 MN-RoCoF 约束,我们提出了一种基于分而治之的支持向量机(D&C-SVM),以提取 BESS 虚拟惯性常数与 MN-RoCoF 之间的线性关系,并将所提方案重构为混合整数二阶锥编程(MISOCP)。最后,我们对 IEEE 39 总线和 118 总线测试系统进行了案例研究。结果验证了所提出的配置方案能确保所有节点的 RoCoF 在预设干扰下保持在 1 Hz/s 以下。所提出的 D&C-SVM 在管理非线性 MN-RoCoF 约束方面的准确率达到 99%。此外,净负荷的不确定性也得到了很好的管理,所有机会约束条件都得到了满足,置信度超过 95%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of energy storage
Journal of energy storage Energy-Renewable Energy, Sustainability and the Environment
CiteScore
11.80
自引率
24.50%
发文量
2262
审稿时长
69 days
期刊介绍: Journal of energy storage focusses on all aspects of energy storage, in particular systems integration, electric grid integration, modelling and analysis, novel energy storage technologies, sizing and management strategies, business models for operation of storage systems and energy storage developments worldwide.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信