Mateen Mirza , Wenjia Du , Lara Rasha , Francesco Iacoviello , Tobias P. Neville , Steven Wilcock , Arfon H. Jones , Rhodri Jervis , Paul R. Shearing , Dan J.L. Brett
{"title":"Following the electrochemical recovery of lithium-ion battery materials from molten salts using operando X-ray imaging","authors":"Mateen Mirza , Wenjia Du , Lara Rasha , Francesco Iacoviello , Tobias P. Neville , Steven Wilcock , Arfon H. Jones , Rhodri Jervis , Paul R. Shearing , Dan J.L. Brett","doi":"10.1016/j.mattod.2024.08.023","DOIUrl":null,"url":null,"abstract":"<div><div>The creation of a circular economy is seen as one of the key challenges in recycling spent Li-ion batteries and would vastly diminish pressures faced in the initial extraction stage of the life cycle. Molten salts (MS) possess a set of excellent electrochemical properties and have been used to recycle metals and non-metals in the battery, metallurgical, nuclear and planetary science sectors. However, an in-depth and clear visual understanding of the electrochemical reduction process is still lacking. Here, we have overcome this challenge by developing a bespoke, miniaturised electrochemical cell enabling real-time X-ray imaging studies. A combination of X-ray radiography and tomography provide an opportunity to non-destructively reveal detailed microstructural evaluation of the electrochemical cell during the pyro-chemical process. Moreover, we have found that significant amounts of CO/CO<sub>2</sub> accumulated at the anode surface may lead to undesired operational consequences.</div></div>","PeriodicalId":387,"journal":{"name":"Materials Today","volume":"80 ","pages":"Pages 226-239"},"PeriodicalIF":21.1000,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Today","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1369702124001895","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
The creation of a circular economy is seen as one of the key challenges in recycling spent Li-ion batteries and would vastly diminish pressures faced in the initial extraction stage of the life cycle. Molten salts (MS) possess a set of excellent electrochemical properties and have been used to recycle metals and non-metals in the battery, metallurgical, nuclear and planetary science sectors. However, an in-depth and clear visual understanding of the electrochemical reduction process is still lacking. Here, we have overcome this challenge by developing a bespoke, miniaturised electrochemical cell enabling real-time X-ray imaging studies. A combination of X-ray radiography and tomography provide an opportunity to non-destructively reveal detailed microstructural evaluation of the electrochemical cell during the pyro-chemical process. Moreover, we have found that significant amounts of CO/CO2 accumulated at the anode surface may lead to undesired operational consequences.
期刊介绍:
Materials Today is the leading journal in the Materials Today family, focusing on the latest and most impactful work in the materials science community. With a reputation for excellence in news and reviews, the journal has now expanded its coverage to include original research and aims to be at the forefront of the field.
We welcome comprehensive articles, short communications, and review articles from established leaders in the rapidly evolving fields of materials science and related disciplines. We strive to provide authors with rigorous peer review, fast publication, and maximum exposure for their work. While we only accept the most significant manuscripts, our speedy evaluation process ensures that there are no unnecessary publication delays.