Zeshuo Meng , Hengyue Xu , Zhengyan Du , Zijin Xu , Jian Xu , Wei Zhang , Xiaoying Hu , Haoteng Sun , Hongwei Tian , Jingsan Xu , Weitao Zheng , Sheng Dai
{"title":"Optimizing entropy-stabilized synthesis kinetics to modulate the oxygen evolution mechanism","authors":"Zeshuo Meng , Hengyue Xu , Zhengyan Du , Zijin Xu , Jian Xu , Wei Zhang , Xiaoying Hu , Haoteng Sun , Hongwei Tian , Jingsan Xu , Weitao Zheng , Sheng Dai","doi":"10.1016/j.mattod.2024.08.014","DOIUrl":null,"url":null,"abstract":"<div><div>Adapting the catalytic reaction pathway and optimizing catalyst activity is a significant challenge in the field of catalysis. Herein, we derived the fundamental form of the diffusion flux-driving force equation using ion diffusion as a research framework, and defined the linear and exponential control coefficients that influence synthesis kinetics. By manipulating these control coefficients, we synthesized high-entropy perovskite La(Co<sub>0.2</sub>Cr<sub>0.2</sub>Fe<sub>0.2</sub>Mn<sub>0.2</sub>Ni<sub>0.2</sub>)O<sub>3</sub> samples with different degrees of kinetic control. Phase testing results showed that adjusting the control coefficients resulted in varying degrees of kinetic control. Experimental evidence and theoretical simulations demonstrated that samples with a higher proportion of kinetic control exhibited faster catalytic pathways, following the lattice oxygen oxidation mechanism (LOM), and showed the highest catalytic activity. As the proportion of kinetic control decreased, the oxygen evolution reaction (OER) catalytic pathway underwent corresponding transitions. These findings contribute to a new research paradigm aimed at bridging the gap between synthesis design and catalytic performance.</div></div>","PeriodicalId":387,"journal":{"name":"Materials Today","volume":"80 ","pages":"Pages 167-178"},"PeriodicalIF":21.1000,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Today","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1369702124001792","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Adapting the catalytic reaction pathway and optimizing catalyst activity is a significant challenge in the field of catalysis. Herein, we derived the fundamental form of the diffusion flux-driving force equation using ion diffusion as a research framework, and defined the linear and exponential control coefficients that influence synthesis kinetics. By manipulating these control coefficients, we synthesized high-entropy perovskite La(Co0.2Cr0.2Fe0.2Mn0.2Ni0.2)O3 samples with different degrees of kinetic control. Phase testing results showed that adjusting the control coefficients resulted in varying degrees of kinetic control. Experimental evidence and theoretical simulations demonstrated that samples with a higher proportion of kinetic control exhibited faster catalytic pathways, following the lattice oxygen oxidation mechanism (LOM), and showed the highest catalytic activity. As the proportion of kinetic control decreased, the oxygen evolution reaction (OER) catalytic pathway underwent corresponding transitions. These findings contribute to a new research paradigm aimed at bridging the gap between synthesis design and catalytic performance.
期刊介绍:
Materials Today is the leading journal in the Materials Today family, focusing on the latest and most impactful work in the materials science community. With a reputation for excellence in news and reviews, the journal has now expanded its coverage to include original research and aims to be at the forefront of the field.
We welcome comprehensive articles, short communications, and review articles from established leaders in the rapidly evolving fields of materials science and related disciplines. We strive to provide authors with rigorous peer review, fast publication, and maximum exposure for their work. While we only accept the most significant manuscripts, our speedy evaluation process ensures that there are no unnecessary publication delays.