{"title":"Immunoprotective efficacy of Escherichia coli-derived outer membrane vesicles displaying PlpE protein of Pasteurella multocida","authors":"Yajuan Li , Liyi Chen , Junfang Xiao , Keyu Feng , Xinheng Zhang , Yung-Fu Chang , Qingmei Xie","doi":"10.1016/j.vaccine.2024.126532","DOIUrl":null,"url":null,"abstract":"<div><div><em>Pasteurella multocida</em> (<em>P. multocida</em>), a pathogenic bacterium known to induce duck cholera, stands as a significant contributor to bacterial diseases afflicting the duck industry, causing substantial annual economic losses on a global scale. In this study, the genes encoding the lipoproteins PlpE of <em>P. multocida</em> strain PMWSG-4 was cloned, inserted into the pBAD-ClyA vector, and the recombinant outer membrane vesicles (OMVs) fused with PlpE antigen of <em>P. multocida</em> was expressed by <em>Escherichia coli</em> (<em>E. coli</em>). Ducks immunized with OMV-PlpE had significantly (<em>P</em> < 0.001) increased production of antigen-specific antibodies. Moreover, at 28 days post-immunization, the expression of genes associated with immune response, including interleukin (IL)-2, IL-4, IL-10, and interferon (IFN)-γ in the spleen tissue of immunized ducks were significantly (<em>P</em> < 0.001) up-regulated compared to unimmunized ducks in the control group. And the active serum had significant bactericidal effects against the PMWSG-4 strain (<em>P</em> < 0.001). The protective efficacy of the vaccines was evaluated by leg muscle challenge with 20 LD50 doses of <em>P. multocida</em>, with the recombinant OMV-PlpE conferring 100 % protection. Histopathological examination and tissue bacterial load detection revealed that OMV-PlpE mitigated tissue damage and bacterial colonization to a statistically significant extent (<em>P</em> < 0.001). These findings serve as a valuable reference for the development of vaccines against <em>P. multocida</em>.</div></div>","PeriodicalId":23491,"journal":{"name":"Vaccine","volume":"44 ","pages":"Article 126532"},"PeriodicalIF":4.5000,"publicationDate":"2024-11-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Vaccine","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0264410X24012143","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"IMMUNOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Pasteurella multocida (P. multocida), a pathogenic bacterium known to induce duck cholera, stands as a significant contributor to bacterial diseases afflicting the duck industry, causing substantial annual economic losses on a global scale. In this study, the genes encoding the lipoproteins PlpE of P. multocida strain PMWSG-4 was cloned, inserted into the pBAD-ClyA vector, and the recombinant outer membrane vesicles (OMVs) fused with PlpE antigen of P. multocida was expressed by Escherichia coli (E. coli). Ducks immunized with OMV-PlpE had significantly (P < 0.001) increased production of antigen-specific antibodies. Moreover, at 28 days post-immunization, the expression of genes associated with immune response, including interleukin (IL)-2, IL-4, IL-10, and interferon (IFN)-γ in the spleen tissue of immunized ducks were significantly (P < 0.001) up-regulated compared to unimmunized ducks in the control group. And the active serum had significant bactericidal effects against the PMWSG-4 strain (P < 0.001). The protective efficacy of the vaccines was evaluated by leg muscle challenge with 20 LD50 doses of P. multocida, with the recombinant OMV-PlpE conferring 100 % protection. Histopathological examination and tissue bacterial load detection revealed that OMV-PlpE mitigated tissue damage and bacterial colonization to a statistically significant extent (P < 0.001). These findings serve as a valuable reference for the development of vaccines against P. multocida.
期刊介绍:
Vaccine is unique in publishing the highest quality science across all disciplines relevant to the field of vaccinology - all original article submissions across basic and clinical research, vaccine manufacturing, history, public policy, behavioral science and ethics, social sciences, safety, and many other related areas are welcomed. The submission categories as given in the Guide for Authors indicate where we receive the most papers. Papers outside these major areas are also welcome and authors are encouraged to contact us with specific questions.