An approximate solution of multi-term fractional telegraph equation with quadratic B-spline basis functions

IF 2.7 Q2 MULTIDISCIPLINARY SCIENCES
Ebimene James Mamadu , Henrietta Ify Ojarikre , Daniel Chinedu Iweobodo , Joseph Nwaka Onyeoghane , Jude Chukwuyem Nwankwo , Ebikonbo-Owei Anthony Mamadu , Jonathan Tsetimi , Ignatius Nkonyeasua Njoseh
{"title":"An approximate solution of multi-term fractional telegraph equation with quadratic B-spline basis functions","authors":"Ebimene James Mamadu ,&nbsp;Henrietta Ify Ojarikre ,&nbsp;Daniel Chinedu Iweobodo ,&nbsp;Joseph Nwaka Onyeoghane ,&nbsp;Jude Chukwuyem Nwankwo ,&nbsp;Ebikonbo-Owei Anthony Mamadu ,&nbsp;Jonathan Tsetimi ,&nbsp;Ignatius Nkonyeasua Njoseh","doi":"10.1016/j.sciaf.2024.e02486","DOIUrl":null,"url":null,"abstract":"<div><div>This paper introduces the Galerkin Method for the approximate solution ofMulti-term Fractional Telegraph Equations (MFTE). The Galerkin Method (GM)is one of the most popular techniques for the solution of Partial Differential Equations (PDEs), and it uses the idea of mapping a solution onto a set of basis functions and then seeking the residual error through minimization. In GM, the weight and basis functions are the same, and as such, the basis functions are selected appropriately to satisfy the given conditions imposed. In this paper, the quadratic B-spline functions are adopted as shape and test functions for resolving the approximate solution of MFTE. Here, the Caputo fractional derivative takes care of the fractional part, and the Gauss-Mamadu-Njoseh quadrature scheme handles numerical integration. Numerical illustrations are examined for single-term and two-term MFTE, respectively, with numerical evidence measured using<span><math><msub><mi>L</mi><mn>2</mn></msub></math></span> and <span><math><msub><mi>L</mi><mi>∞</mi></msub></math></span> error norms. Consequently, the resulting numerical evidence, as presented in Tables and Figures, shows the accuracy and reliability of the method. Also, the study examined and presented relevant theorems of convergence and error analyses of method. MAPLE 18 was used for all computational frameworks in this research.</div></div>","PeriodicalId":21690,"journal":{"name":"Scientific African","volume":"26 ","pages":"Article e02486"},"PeriodicalIF":2.7000,"publicationDate":"2024-11-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Scientific African","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2468227624004289","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

This paper introduces the Galerkin Method for the approximate solution ofMulti-term Fractional Telegraph Equations (MFTE). The Galerkin Method (GM)is one of the most popular techniques for the solution of Partial Differential Equations (PDEs), and it uses the idea of mapping a solution onto a set of basis functions and then seeking the residual error through minimization. In GM, the weight and basis functions are the same, and as such, the basis functions are selected appropriately to satisfy the given conditions imposed. In this paper, the quadratic B-spline functions are adopted as shape and test functions for resolving the approximate solution of MFTE. Here, the Caputo fractional derivative takes care of the fractional part, and the Gauss-Mamadu-Njoseh quadrature scheme handles numerical integration. Numerical illustrations are examined for single-term and two-term MFTE, respectively, with numerical evidence measured usingL2 and L error norms. Consequently, the resulting numerical evidence, as presented in Tables and Figures, shows the accuracy and reliability of the method. Also, the study examined and presented relevant theorems of convergence and error analyses of method. MAPLE 18 was used for all computational frameworks in this research.
用二次 B 样条基函数近似解多期分数电报方程
本文介绍了用于近似求解多期分数电报方程(MFTE)的伽勒金法。伽勒金方法(GM)是求解偏微分方程(PDEs)最常用的技术之一,它采用的思想是将解映射到一组基函数上,然后通过最小化寻求残余误差。在 GM 中,权重和基函数是相同的,因此要适当地选择基函数以满足所施加的给定条件。本文采用二次 B-样条函数作为形状函数和检验函数来解析 MFTE 的近似解。这里,卡普托分数导数处理分数部分,高斯-马马杜-恩约瑟正交方案处理数值积分。分别对单项和双项 MFTE 进行了数值说明,并使用 L2 和 L∞ 误差规范测量了数值证据。因此,表和图中给出的数值证据显示了该方法的准确性和可靠性。此外,研究还检验并提出了方法的收敛性和误差分析的相关定理。本研究的所有计算框架均使用 MAPLE 18。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Scientific African
Scientific African Multidisciplinary-Multidisciplinary
CiteScore
5.60
自引率
3.40%
发文量
332
审稿时长
10 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信