Pawantree Promsuwan , Md Al Mahadi Hasan , Suwen Xu , Ya Yang
{"title":"Droplet nanogenerators: Mechanisms, performance, and applications","authors":"Pawantree Promsuwan , Md Al Mahadi Hasan , Suwen Xu , Ya Yang","doi":"10.1016/j.mattod.2024.08.017","DOIUrl":null,"url":null,"abstract":"<div><div>The need for power technology that improves human life and convenience is driving the demand for increased energy consumption. At present, fossil fuels are the primary source of energy that meets the energy demand of mankind. However, they are also the main cause of environmental pollution. Therefore, it is imperative to develop technology that can harness energy from renewable sources to replace fossil fuels. One promising technology that has gained significant attention is the droplet nanogenerators, which harvest energy from various forms of water. This technology has grown in popularity due to its straightforward design, low fabrication cost, and high output power, which is sufficient to power small electronic devices sustainably. With innovative structures and various fundamental materials, droplet nanogenerators’ performance can be improved, which leads to the expansion of their application areas. This review summarizes recent advancements in droplet nanogenerators, including mechanisms, output performance, and applications. Finally, the challenges and opportunities associated with droplet nanogenerators are briefly discussed.</div></div>","PeriodicalId":387,"journal":{"name":"Materials Today","volume":"80 ","pages":"Pages 497-528"},"PeriodicalIF":21.1000,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Today","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1369702124001822","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
The need for power technology that improves human life and convenience is driving the demand for increased energy consumption. At present, fossil fuels are the primary source of energy that meets the energy demand of mankind. However, they are also the main cause of environmental pollution. Therefore, it is imperative to develop technology that can harness energy from renewable sources to replace fossil fuels. One promising technology that has gained significant attention is the droplet nanogenerators, which harvest energy from various forms of water. This technology has grown in popularity due to its straightforward design, low fabrication cost, and high output power, which is sufficient to power small electronic devices sustainably. With innovative structures and various fundamental materials, droplet nanogenerators’ performance can be improved, which leads to the expansion of their application areas. This review summarizes recent advancements in droplet nanogenerators, including mechanisms, output performance, and applications. Finally, the challenges and opportunities associated with droplet nanogenerators are briefly discussed.
期刊介绍:
Materials Today is the leading journal in the Materials Today family, focusing on the latest and most impactful work in the materials science community. With a reputation for excellence in news and reviews, the journal has now expanded its coverage to include original research and aims to be at the forefront of the field.
We welcome comprehensive articles, short communications, and review articles from established leaders in the rapidly evolving fields of materials science and related disciplines. We strive to provide authors with rigorous peer review, fast publication, and maximum exposure for their work. While we only accept the most significant manuscripts, our speedy evaluation process ensures that there are no unnecessary publication delays.