{"title":"Engineering defects in graphitic carbon nitride photocatalysts","authors":"Qi Li , Siyu Zhao , Baojiang Jiang , Mietek Jaroniec , Liping Zhang","doi":"10.1016/j.mattod.2024.09.019","DOIUrl":null,"url":null,"abstract":"<div><div>Graphitic carbon nitride (g-C<sub>3</sub>N<sub>4</sub>) has emerged as a promising metal-free photocatalyst. However, it continues to face significant challenges in achieving competitive activities both in laboratories and practical applications. Defect engineering is a versatile strategy to refine the intrinsic properties of semiconductor photocatalysts, modulating their electronic structure, charge dynamics and active surface sites. Given rapid advancements in this field, there is an urgent need to overview the progress in engineering of defects in g-C<sub>3</sub>N<sub>4</sub>, which is essential for a deeper understanding of the activity of this photocatalyst. This review focuses on the synthesis, characterization, and physiochemical properties of defect-engineered g-C<sub>3</sub>N<sub>4</sub>, including g-C<sub>3</sub>N<sub>4</sub> with substitutional dopants, interstitial dopants, vacancies, functional groups and/or structural disorder. It also explores various applications of g-C<sub>3</sub>N<sub>4</sub> materials with introduced defects for photocatalytic H<sub>2</sub> evolution, CO<sub>2</sub> reduction, N<sub>2</sub> fixation and organic transformations, along with the mechanisms underlying their performance at the molecular level. Finally, this review article presents a perspective on the design, synthesis and properties of defect-modified g-C<sub>3</sub>N<sub>4</sub> photocatalysts.</div></div>","PeriodicalId":387,"journal":{"name":"Materials Today","volume":"80 ","pages":"Pages 886-904"},"PeriodicalIF":21.1000,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Today","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1369702124002220","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Graphitic carbon nitride (g-C3N4) has emerged as a promising metal-free photocatalyst. However, it continues to face significant challenges in achieving competitive activities both in laboratories and practical applications. Defect engineering is a versatile strategy to refine the intrinsic properties of semiconductor photocatalysts, modulating their electronic structure, charge dynamics and active surface sites. Given rapid advancements in this field, there is an urgent need to overview the progress in engineering of defects in g-C3N4, which is essential for a deeper understanding of the activity of this photocatalyst. This review focuses on the synthesis, characterization, and physiochemical properties of defect-engineered g-C3N4, including g-C3N4 with substitutional dopants, interstitial dopants, vacancies, functional groups and/or structural disorder. It also explores various applications of g-C3N4 materials with introduced defects for photocatalytic H2 evolution, CO2 reduction, N2 fixation and organic transformations, along with the mechanisms underlying their performance at the molecular level. Finally, this review article presents a perspective on the design, synthesis and properties of defect-modified g-C3N4 photocatalysts.
期刊介绍:
Materials Today is the leading journal in the Materials Today family, focusing on the latest and most impactful work in the materials science community. With a reputation for excellence in news and reviews, the journal has now expanded its coverage to include original research and aims to be at the forefront of the field.
We welcome comprehensive articles, short communications, and review articles from established leaders in the rapidly evolving fields of materials science and related disciplines. We strive to provide authors with rigorous peer review, fast publication, and maximum exposure for their work. While we only accept the most significant manuscripts, our speedy evaluation process ensures that there are no unnecessary publication delays.