High-performance in domain matching epitaxial La:HfO2 film memristor for spiking neural network system application

IF 21.1 1区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY
Xiaobing Yan , Jiangzhen Niu , Ziliang Fang , Jikang Xu , Changlin Chen , Yufei Zhang , Yong Sun , Liang Tong , Jianan Sun , Saibo Yin , Yiduo Shao , Shiqing Sun , Jianhui Zhao , Mario Lanza , Tianling Ren , Jingsheng CHEN , Peng Zhou
{"title":"High-performance in domain matching epitaxial La:HfO2 film memristor for spiking neural network system application","authors":"Xiaobing Yan ,&nbsp;Jiangzhen Niu ,&nbsp;Ziliang Fang ,&nbsp;Jikang Xu ,&nbsp;Changlin Chen ,&nbsp;Yufei Zhang ,&nbsp;Yong Sun ,&nbsp;Liang Tong ,&nbsp;Jianan Sun ,&nbsp;Saibo Yin ,&nbsp;Yiduo Shao ,&nbsp;Shiqing Sun ,&nbsp;Jianhui Zhao ,&nbsp;Mario Lanza ,&nbsp;Tianling Ren ,&nbsp;Jingsheng CHEN ,&nbsp;Peng Zhou","doi":"10.1016/j.mattod.2024.09.016","DOIUrl":null,"url":null,"abstract":"<div><div>Next-generation synaptic devices with multiple non-volatile states, high endurance and high-temperature operation are highly desired in the era of big data. Here, high-performance memristors are fabricated using La: HfO<sub>2</sub>(HLO)/La<sub>2/3</sub>Sr<sub>1/3</sub>MnO<sub>3</sub>(LSMO) heterostructures on Si substrate, with domain matching epitaxial structure using SrTiO<sub>3</sub>(STO) as buffer layer. The devices possess high reliability, nonvolatility, low fluctuation rate (&lt;2.5 %) and the highest number of states per cell (32 states or 5 bits) among the reported Hf-based ferroelectric memories at room temperature (25 °C) and high temperature (85 °C). Moreover, the device exhibits high endurance of 10<sup>9</sup> cycles and excellent uniformity at the room and high temperatures. The functionality of long-term plasticity in the synaptic device is obtained with high precision (128 states), reproducibility (cycle-to-cycle variation, ∼4.7 %) and linearity. Then, we simulate one system using the stable performance at high temperature that detects the speed of moving targets, which achieves high accuracy of 98 % and 99 % on Human Motion and MNIST datasets, respectively. Furthermore, we have built a hardware circuit to realize a spiking neural network (SNN) system for digital pattern online learning, which demonstrates the capability of the device in brain-like computing applications.</div></div>","PeriodicalId":387,"journal":{"name":"Materials Today","volume":"80 ","pages":"Pages 365-373"},"PeriodicalIF":21.1000,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Today","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1369702124002207","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Next-generation synaptic devices with multiple non-volatile states, high endurance and high-temperature operation are highly desired in the era of big data. Here, high-performance memristors are fabricated using La: HfO2(HLO)/La2/3Sr1/3MnO3(LSMO) heterostructures on Si substrate, with domain matching epitaxial structure using SrTiO3(STO) as buffer layer. The devices possess high reliability, nonvolatility, low fluctuation rate (<2.5 %) and the highest number of states per cell (32 states or 5 bits) among the reported Hf-based ferroelectric memories at room temperature (25 °C) and high temperature (85 °C). Moreover, the device exhibits high endurance of 109 cycles and excellent uniformity at the room and high temperatures. The functionality of long-term plasticity in the synaptic device is obtained with high precision (128 states), reproducibility (cycle-to-cycle variation, ∼4.7 %) and linearity. Then, we simulate one system using the stable performance at high temperature that detects the speed of moving targets, which achieves high accuracy of 98 % and 99 % on Human Motion and MNIST datasets, respectively. Furthermore, we have built a hardware circuit to realize a spiking neural network (SNN) system for digital pattern online learning, which demonstrates the capability of the device in brain-like computing applications.

Abstract Image

用于尖峰神经网络系统的高性能域匹配外延 La:HfO2 薄膜忆阻器
在大数据时代,具有多种非易失性状态、高耐久性和高温运行的下一代突触器件备受青睐。本文在硅衬底上使用 La: HfO2(HLO)/La2/3Sr1/3MnO3(LSMO)异质结构制作了高性能忆阻器,并使用 SrTiO3(STO)作为缓冲层实现了畴匹配外延结构。在室温(25 °C)和高温(85 °C)条件下,该器件具有高可靠性、无波动性、低波动率(<2.5 %)以及在已报道的铪基铁电存储器中每单元状态数最多(32 个状态或 5 位)。此外,该器件在室温和高温下具有 109 次循环的高耐久性和出色的均匀性。突触装置的长期可塑性功能具有高精度(128 个状态)、可重复性(周期与周期之间的变化 ∼ 4.7 %)和线性。然后,我们模拟了一个在高温下性能稳定的系统,该系统可检测移动目标的速度,在人类运动数据集和 MNIST 数据集上分别实现了 98 % 和 99 % 的高精度。此外,我们还构建了一个硬件电路,实现了用于数字模式在线学习的尖峰神经网络(SNN)系统,证明了该设备在类脑计算应用中的能力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Materials Today
Materials Today 工程技术-材料科学:综合
CiteScore
36.30
自引率
1.20%
发文量
237
审稿时长
23 days
期刊介绍: Materials Today is the leading journal in the Materials Today family, focusing on the latest and most impactful work in the materials science community. With a reputation for excellence in news and reviews, the journal has now expanded its coverage to include original research and aims to be at the forefront of the field. We welcome comprehensive articles, short communications, and review articles from established leaders in the rapidly evolving fields of materials science and related disciplines. We strive to provide authors with rigorous peer review, fast publication, and maximum exposure for their work. While we only accept the most significant manuscripts, our speedy evaluation process ensures that there are no unnecessary publication delays.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信