{"title":"Price predictability at ultra-high frequency: Entropy-based randomness test","authors":"Andrey Shternshis , Stefano Marmi","doi":"10.1016/j.cnsns.2024.108469","DOIUrl":null,"url":null,"abstract":"<div><div>We use the statistical properties of Shannon entropy estimator and Kullback–Leibler divergence to study the predictability of ultra-high frequency financial data. We develop a statistical test for the predictability of a sequence based on empirical frequencies. We show that the degree of randomness grows with the increase of aggregation level in transaction time. We also find that predictable days are usually characterized by high trading activity, i.e., days with unusually high trading volumes and the number of price changes. We find a group of stocks for which predictability is caused by a frequent change of price direction. We study stylized facts that cause price predictability such as persistence of order signs, autocorrelation of returns, and volatility clustering. We perform multiple testing for sub-intervals of days to identify whether there is predictability at a specific time period during the day.</div></div>","PeriodicalId":50658,"journal":{"name":"Communications in Nonlinear Science and Numerical Simulation","volume":"141 ","pages":"Article 108469"},"PeriodicalIF":3.8000,"publicationDate":"2024-11-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications in Nonlinear Science and Numerical Simulation","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1007570424006543","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
We use the statistical properties of Shannon entropy estimator and Kullback–Leibler divergence to study the predictability of ultra-high frequency financial data. We develop a statistical test for the predictability of a sequence based on empirical frequencies. We show that the degree of randomness grows with the increase of aggregation level in transaction time. We also find that predictable days are usually characterized by high trading activity, i.e., days with unusually high trading volumes and the number of price changes. We find a group of stocks for which predictability is caused by a frequent change of price direction. We study stylized facts that cause price predictability such as persistence of order signs, autocorrelation of returns, and volatility clustering. We perform multiple testing for sub-intervals of days to identify whether there is predictability at a specific time period during the day.
期刊介绍:
The journal publishes original research findings on experimental observation, mathematical modeling, theoretical analysis and numerical simulation, for more accurate description, better prediction or novel application, of nonlinear phenomena in science and engineering. It offers a venue for researchers to make rapid exchange of ideas and techniques in nonlinear science and complexity.
The submission of manuscripts with cross-disciplinary approaches in nonlinear science and complexity is particularly encouraged.
Topics of interest:
Nonlinear differential or delay equations, Lie group analysis and asymptotic methods, Discontinuous systems, Fractals, Fractional calculus and dynamics, Nonlinear effects in quantum mechanics, Nonlinear stochastic processes, Experimental nonlinear science, Time-series and signal analysis, Computational methods and simulations in nonlinear science and engineering, Control of dynamical systems, Synchronization, Lyapunov analysis, High-dimensional chaos and turbulence, Chaos in Hamiltonian systems, Integrable systems and solitons, Collective behavior in many-body systems, Biological physics and networks, Nonlinear mechanical systems, Complex systems and complexity.
No length limitation for contributions is set, but only concisely written manuscripts are published. Brief papers are published on the basis of Rapid Communications. Discussions of previously published papers are welcome.