Linear-quadratic stochastic Stackelberg differential games with asymmetric information for systems driven by multi-dimensional jump-diffusion processes

IF 1.2 3区 数学 Q1 MATHEMATICS
Jun Moon
{"title":"Linear-quadratic stochastic Stackelberg differential games with asymmetric information for systems driven by multi-dimensional jump-diffusion processes","authors":"Jun Moon","doi":"10.1016/j.jmaa.2024.129068","DOIUrl":null,"url":null,"abstract":"<div><div>We consider the linear-quadratic stochastic leader-follower Stackelberg differential game for jump-diffusion systems with asymmetric information. In our problem setup, given complete information <span><math><mi>F</mi></math></span>, leader and follower have access to partial information (filtration) <span><math><msub><mrow><mi>G</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>⊂</mo><mi>F</mi></math></span> and <span><math><msub><mrow><mi>G</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>⊂</mo><mi>F</mi></math></span>, respectively, where <span><math><msub><mrow><mi>G</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>⊂</mo><msub><mrow><mi>G</mi></mrow><mrow><mn>1</mn></mrow></msub></math></span> captures asymmetric information. Our paper can be viewed as an extension of the complete information (<span><math><msub><mrow><mi>G</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>=</mo><msub><mrow><mi>G</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>=</mo><mi>F</mi></math></span>) in <span><span>[15]</span></span> to the problem with partial and asymmetric information. By generalizing the stochastic maximum principles and four-step schemes of <span><span>[15]</span></span>, we obtain the state-feedback representation of the (open-loop type) Stackelberg equilibrium for the leader and the follower in terms of the coupled integro-type Riccati differential equations and the filtering (state) processes with respect to <span><math><msub><mrow><mi>G</mi></mrow><mrow><mn>2</mn></mrow></msub></math></span> and <span><math><msub><mrow><mi>G</mi></mrow><mrow><mn>1</mn></mrow></msub></math></span>. Indeed, due to the partial and asymmetric information nature, we have to identify new types of the four-step schemes and develop different approaches to obtain the (filtering-based) state-feedback type Stackelberg equilibrium.</div></div>","PeriodicalId":50147,"journal":{"name":"Journal of Mathematical Analysis and Applications","volume":"544 2","pages":"Article 129068"},"PeriodicalIF":1.2000,"publicationDate":"2024-11-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Mathematical Analysis and Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022247X24009909","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

We consider the linear-quadratic stochastic leader-follower Stackelberg differential game for jump-diffusion systems with asymmetric information. In our problem setup, given complete information F, leader and follower have access to partial information (filtration) G1F and G2F, respectively, where G2G1 captures asymmetric information. Our paper can be viewed as an extension of the complete information (G2=G1=F) in [15] to the problem with partial and asymmetric information. By generalizing the stochastic maximum principles and four-step schemes of [15], we obtain the state-feedback representation of the (open-loop type) Stackelberg equilibrium for the leader and the follower in terms of the coupled integro-type Riccati differential equations and the filtering (state) processes with respect to G2 and G1. Indeed, due to the partial and asymmetric information nature, we have to identify new types of the four-step schemes and develop different approaches to obtain the (filtering-based) state-feedback type Stackelberg equilibrium.
多维跳跃-扩散过程驱动系统的线性-四元随机斯塔克尔伯格微分博弈与非对称信息
我们考虑的是信息不对称的跳跃扩散系统的线性-二次随机领导者-追随者斯塔克尔伯格微分博弈。在我们的问题设置中,在给定完全信息 F 的情况下,领导者和追随者分别可以获得部分信息(过滤)G1⊂F 和 G2⊂F,其中 G2⊂G1 表示信息不对称。我们的论文可以看作是 [15] 中完全信息(G2=G1=F)问题向部分信息和非对称信息问题的扩展。通过推广 [15] 中的随机最大原则和四步方案,我们得到了领导者和追随者的(开环型)斯塔克尔伯格均衡的状态反馈表示,即耦合积分型里卡提微分方程和关于 G2 和 G1 的过滤(状态)过程。事实上,由于信息的片面性和非对称性,我们必须确定四步方案的新类型,并开发不同的方法来获得(基于过滤的)状态反馈型斯泰尔伯格均衡。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.50
自引率
7.70%
发文量
790
审稿时长
6 months
期刊介绍: The Journal of Mathematical Analysis and Applications presents papers that treat mathematical analysis and its numerous applications. The journal emphasizes articles devoted to the mathematical treatment of questions arising in physics, chemistry, biology, and engineering, particularly those that stress analytical aspects and novel problems and their solutions. Papers are sought which employ one or more of the following areas of classical analysis: • Analytic number theory • Functional analysis and operator theory • Real and harmonic analysis • Complex analysis • Numerical analysis • Applied mathematics • Partial differential equations • Dynamical systems • Control and Optimization • Probability • Mathematical biology • Combinatorics • Mathematical physics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信