A strong unique continuation property for weakly coupled elliptic systems

IF 1.2 3区 数学 Q1 MATHEMATICS
Mónica Clapp , Víctor Hernández-Santamaría , Alberto Saldaña
{"title":"A strong unique continuation property for weakly coupled elliptic systems","authors":"Mónica Clapp ,&nbsp;Víctor Hernández-Santamaría ,&nbsp;Alberto Saldaña","doi":"10.1016/j.jmaa.2024.129069","DOIUrl":null,"url":null,"abstract":"<div><div>We establish the validity of a strong unique continuation property for weakly coupled elliptic systems, including competitive ones. Our proof exploits the system-structure of the problem and Carleman estimates. Then, we use our unique continuation theorems to show two nonexistence results. The first one states the nonexistence of nontrivial solutions to a weakly coupled elliptic system with a critical nonlinearity and Dirichlet boundary condition on starshaped domains, whereas the second one yields nonexistence of symmetric least energy solutions for a critical system in more general domains.</div></div>","PeriodicalId":50147,"journal":{"name":"Journal of Mathematical Analysis and Applications","volume":"544 2","pages":"Article 129069"},"PeriodicalIF":1.2000,"publicationDate":"2024-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Mathematical Analysis and Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022247X24009910","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

We establish the validity of a strong unique continuation property for weakly coupled elliptic systems, including competitive ones. Our proof exploits the system-structure of the problem and Carleman estimates. Then, we use our unique continuation theorems to show two nonexistence results. The first one states the nonexistence of nontrivial solutions to a weakly coupled elliptic system with a critical nonlinearity and Dirichlet boundary condition on starshaped domains, whereas the second one yields nonexistence of symmetric least energy solutions for a critical system in more general domains.
弱耦合椭圆系统的强唯一延续特性
我们为弱耦合椭圆系统(包括竞争性椭圆系统)建立了强唯一延续性质的有效性。我们的证明利用了问题的系统结构和卡勒曼估计。然后,我们利用唯一续存定理证明了两个不存在结果。第一个结果表明,在星形域中,具有临界非线性和迪里希特边界条件的弱耦合椭圆系统的非微观解不存在,而第二个结果表明,在更一般的域中,临界系统的对称最小能量解不存在。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.50
自引率
7.70%
发文量
790
审稿时长
6 months
期刊介绍: The Journal of Mathematical Analysis and Applications presents papers that treat mathematical analysis and its numerous applications. The journal emphasizes articles devoted to the mathematical treatment of questions arising in physics, chemistry, biology, and engineering, particularly those that stress analytical aspects and novel problems and their solutions. Papers are sought which employ one or more of the following areas of classical analysis: • Analytic number theory • Functional analysis and operator theory • Real and harmonic analysis • Complex analysis • Numerical analysis • Applied mathematics • Partial differential equations • Dynamical systems • Control and Optimization • Probability • Mathematical biology • Combinatorics • Mathematical physics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信