Global well-posedness of the three-dimensional free boundary problem for viscoelastic fluids without surface tension

IF 2.4 2区 数学 Q1 MATHEMATICS
Jingchi Huang, Zheng-an Yao, Xiangyu You
{"title":"Global well-posedness of the three-dimensional free boundary problem for viscoelastic fluids without surface tension","authors":"Jingchi Huang,&nbsp;Zheng-an Yao,&nbsp;Xiangyu You","doi":"10.1016/j.jde.2024.11.020","DOIUrl":null,"url":null,"abstract":"<div><div>In this paper, we consider the three-dimensional free boundary problem of incompressible and compressible neo-Hookean viscoelastic fluid equations in an infinite strip without surface tension, provided that the initial data is sufficiently close to the equilibrium state. By reformulating the problems in Lagrangian coordinates, we can get the stabilizing effect of elasticity. In both cases, we utilize the elliptic estimates to improve the estimates. Moreover, for the compressible case, we find there is an extra ODE structure that can improve the regularity of the free boundary, thus we can have the global well-posedness. To prove the global well-posedness for the incompressible case, we employ two-tier energy method introduced in <span><span>[11]</span></span><span><span>[12]</span></span><span><span>[13]</span></span> to compensate for the inferior structure.</div></div>","PeriodicalId":15623,"journal":{"name":"Journal of Differential Equations","volume":"417 ","pages":"Pages 191-230"},"PeriodicalIF":2.4000,"publicationDate":"2024-11-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Differential Equations","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022039624007368","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we consider the three-dimensional free boundary problem of incompressible and compressible neo-Hookean viscoelastic fluid equations in an infinite strip without surface tension, provided that the initial data is sufficiently close to the equilibrium state. By reformulating the problems in Lagrangian coordinates, we can get the stabilizing effect of elasticity. In both cases, we utilize the elliptic estimates to improve the estimates. Moreover, for the compressible case, we find there is an extra ODE structure that can improve the regularity of the free boundary, thus we can have the global well-posedness. To prove the global well-posedness for the incompressible case, we employ two-tier energy method introduced in [11][12][13] to compensate for the inferior structure.
无表面张力粘弹性流体三维自由边界问题的全局拟合性
本文考虑了无表面张力的无限条带中不可压缩和可压缩新胡克粘弹性流体方程的三维自由边界问题,前提是初始数据足够接近平衡状态。通过在拉格朗日坐标中重新表述问题,我们可以获得弹性的稳定效应。在这两种情况下,我们都利用椭圆估计来改进估计。此外,在可压缩情况下,我们发现有一个额外的 ODE 结构可以改善自由边界的正则性,因此我们可以得到全局好拟性。为了证明不可压缩情况下的全局最优性,我们采用了[11][12][13]中介绍的两层能量法来补偿劣化结构。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
4.40
自引率
8.30%
发文量
543
审稿时长
9 months
期刊介绍: The Journal of Differential Equations is concerned with the theory and the application of differential equations. The articles published are addressed not only to mathematicians but also to those engineers, physicists, and other scientists for whom differential equations are valuable research tools. Research Areas Include: • Mathematical control theory • Ordinary differential equations • Partial differential equations • Stochastic differential equations • Topological dynamics • Related topics
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信