Time splitting method for nonlinear Schrödinger equation with rough initial data in L2

IF 2.4 2区 数学 Q1 MATHEMATICS
Hyung Jun Choi , Seonghak Kim , Youngwoo Koh
{"title":"Time splitting method for nonlinear Schrödinger equation with rough initial data in L2","authors":"Hyung Jun Choi ,&nbsp;Seonghak Kim ,&nbsp;Youngwoo Koh","doi":"10.1016/j.jde.2024.11.018","DOIUrl":null,"url":null,"abstract":"<div><div>We establish convergence results related to the operator splitting scheme on the Cauchy problem for the nonlinear Schrödinger equation with rough initial data in <span><math><msup><mrow><mi>L</mi></mrow><mrow><mn>2</mn></mrow></msup></math></span>,<span><span><span><math><mrow><mo>{</mo><mtable><mtr><mtd><mi>i</mi><msub><mrow><mo>∂</mo></mrow><mrow><mi>t</mi></mrow></msub><mi>u</mi><mo>+</mo><mi>Δ</mi><mi>u</mi><mo>=</mo><mi>λ</mi><mo>|</mo><mi>u</mi><msup><mrow><mo>|</mo></mrow><mrow><mi>p</mi></mrow></msup><mi>u</mi><mo>,</mo><mspace></mspace></mtd><mtd><mo>(</mo><mi>x</mi><mo>,</mo><mi>t</mi><mo>)</mo><mo>∈</mo><msup><mrow><mi>R</mi></mrow><mrow><mi>d</mi></mrow></msup><mo>×</mo><msub><mrow><mi>R</mi></mrow><mrow><mo>+</mo></mrow></msub><mo>,</mo></mtd></mtr><mtr><mtd><mi>u</mi><mo>(</mo><mi>x</mi><mo>,</mo><mn>0</mn><mo>)</mo><mo>=</mo><mi>ϕ</mi><mo>(</mo><mi>x</mi><mo>)</mo><mo>,</mo><mspace></mspace></mtd><mtd><mi>x</mi><mo>∈</mo><msup><mrow><mi>R</mi></mrow><mrow><mi>d</mi></mrow></msup><mo>,</mo></mtd></mtr></mtable></mrow></math></span></span></span> where <span><math><mi>λ</mi><mo>∈</mo><mo>{</mo><mo>−</mo><mn>1</mn><mo>,</mo><mn>1</mn><mo>}</mo></math></span> and <span><math><mi>p</mi><mo>&gt;</mo><mn>0</mn></math></span>. While the Lie approximation <span><math><msub><mrow><mi>Z</mi></mrow><mrow><mi>L</mi></mrow></msub></math></span> is known to converge to the solution <em>u</em> when the initial datum <em>ϕ</em> is sufficiently smooth, the convergence result for rough initial data is open to question. In this paper, for rough initial data <span><math><mi>ϕ</mi><mo>∈</mo><msup><mrow><mi>L</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>(</mo><msup><mrow><mi>R</mi></mrow><mrow><mi>d</mi></mrow></msup><mo>)</mo></math></span>, we prove the <span><math><msup><mrow><mi>L</mi></mrow><mrow><mn>2</mn></mrow></msup></math></span> convergence of the filtered Lie approximation <span><math><msub><mrow><mi>Z</mi></mrow><mrow><mi>f</mi><mi>l</mi><mi>t</mi></mrow></msub></math></span> to the solution <em>u</em> in the mass-subcritical range, <span><math><mn>0</mn><mo>&lt;</mo><mi>p</mi><mo>&lt;</mo><mfrac><mrow><mn>4</mn></mrow><mrow><mi>d</mi></mrow></mfrac></math></span>. Furthermore, we provide a precise convergence result for radial initial data <span><math><mi>ϕ</mi><mo>∈</mo><msup><mrow><mi>L</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>(</mo><msup><mrow><mi>R</mi></mrow><mrow><mi>d</mi></mrow></msup><mo>)</mo></math></span>.</div></div>","PeriodicalId":15623,"journal":{"name":"Journal of Differential Equations","volume":"417 ","pages":"Pages 164-190"},"PeriodicalIF":2.4000,"publicationDate":"2024-11-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Differential Equations","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022039624007344","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

We establish convergence results related to the operator splitting scheme on the Cauchy problem for the nonlinear Schrödinger equation with rough initial data in L2,{itu+Δu=λ|u|pu,(x,t)Rd×R+,u(x,0)=ϕ(x),xRd, where λ{1,1} and p>0. While the Lie approximation ZL is known to converge to the solution u when the initial datum ϕ is sufficiently smooth, the convergence result for rough initial data is open to question. In this paper, for rough initial data ϕL2(Rd), we prove the L2 convergence of the filtered Lie approximation Zflt to the solution u in the mass-subcritical range, 0<p<4d. Furthermore, we provide a precise convergence result for radial initial data ϕL2(Rd).
具有 L2 中粗糙初始数据的非线性薛定谔方程的时间分割法
我们建立了非线性薛定谔方程 Cauchy 问题的算子分裂方案的收敛结果,该问题的初始数据为 L2 中的粗糙数据,{i∂tu+Δu=λ|u|pu,(x,t)∈Rd×R+,u(x,0)=j(x),x∈Rd,其中λ∈{-1,1}和 p>0。众所周知,当初始数据 j 足够光滑时,Lie 近似值 ZL 会收敛于解 u,但粗糙初始数据的收敛结果却有待商榷。在本文中,对于粗糙初始数据ϕ∈L2(Rd),我们证明了滤波Lie近似Zflt在质量次临界范围(0<p<4d)内对解u的L2收敛性。此外,我们还提供了径向初始数据 j∈L2(Rd) 的精确收敛结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
4.40
自引率
8.30%
发文量
543
审稿时长
9 months
期刊介绍: The Journal of Differential Equations is concerned with the theory and the application of differential equations. The articles published are addressed not only to mathematicians but also to those engineers, physicists, and other scientists for whom differential equations are valuable research tools. Research Areas Include: • Mathematical control theory • Ordinary differential equations • Partial differential equations • Stochastic differential equations • Topological dynamics • Related topics
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信