{"title":"Time splitting method for nonlinear Schrödinger equation with rough initial data in L2","authors":"Hyung Jun Choi , Seonghak Kim , Youngwoo Koh","doi":"10.1016/j.jde.2024.11.018","DOIUrl":null,"url":null,"abstract":"<div><div>We establish convergence results related to the operator splitting scheme on the Cauchy problem for the nonlinear Schrödinger equation with rough initial data in <span><math><msup><mrow><mi>L</mi></mrow><mrow><mn>2</mn></mrow></msup></math></span>,<span><span><span><math><mrow><mo>{</mo><mtable><mtr><mtd><mi>i</mi><msub><mrow><mo>∂</mo></mrow><mrow><mi>t</mi></mrow></msub><mi>u</mi><mo>+</mo><mi>Δ</mi><mi>u</mi><mo>=</mo><mi>λ</mi><mo>|</mo><mi>u</mi><msup><mrow><mo>|</mo></mrow><mrow><mi>p</mi></mrow></msup><mi>u</mi><mo>,</mo><mspace></mspace></mtd><mtd><mo>(</mo><mi>x</mi><mo>,</mo><mi>t</mi><mo>)</mo><mo>∈</mo><msup><mrow><mi>R</mi></mrow><mrow><mi>d</mi></mrow></msup><mo>×</mo><msub><mrow><mi>R</mi></mrow><mrow><mo>+</mo></mrow></msub><mo>,</mo></mtd></mtr><mtr><mtd><mi>u</mi><mo>(</mo><mi>x</mi><mo>,</mo><mn>0</mn><mo>)</mo><mo>=</mo><mi>ϕ</mi><mo>(</mo><mi>x</mi><mo>)</mo><mo>,</mo><mspace></mspace></mtd><mtd><mi>x</mi><mo>∈</mo><msup><mrow><mi>R</mi></mrow><mrow><mi>d</mi></mrow></msup><mo>,</mo></mtd></mtr></mtable></mrow></math></span></span></span> where <span><math><mi>λ</mi><mo>∈</mo><mo>{</mo><mo>−</mo><mn>1</mn><mo>,</mo><mn>1</mn><mo>}</mo></math></span> and <span><math><mi>p</mi><mo>></mo><mn>0</mn></math></span>. While the Lie approximation <span><math><msub><mrow><mi>Z</mi></mrow><mrow><mi>L</mi></mrow></msub></math></span> is known to converge to the solution <em>u</em> when the initial datum <em>ϕ</em> is sufficiently smooth, the convergence result for rough initial data is open to question. In this paper, for rough initial data <span><math><mi>ϕ</mi><mo>∈</mo><msup><mrow><mi>L</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>(</mo><msup><mrow><mi>R</mi></mrow><mrow><mi>d</mi></mrow></msup><mo>)</mo></math></span>, we prove the <span><math><msup><mrow><mi>L</mi></mrow><mrow><mn>2</mn></mrow></msup></math></span> convergence of the filtered Lie approximation <span><math><msub><mrow><mi>Z</mi></mrow><mrow><mi>f</mi><mi>l</mi><mi>t</mi></mrow></msub></math></span> to the solution <em>u</em> in the mass-subcritical range, <span><math><mn>0</mn><mo><</mo><mi>p</mi><mo><</mo><mfrac><mrow><mn>4</mn></mrow><mrow><mi>d</mi></mrow></mfrac></math></span>. Furthermore, we provide a precise convergence result for radial initial data <span><math><mi>ϕ</mi><mo>∈</mo><msup><mrow><mi>L</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>(</mo><msup><mrow><mi>R</mi></mrow><mrow><mi>d</mi></mrow></msup><mo>)</mo></math></span>.</div></div>","PeriodicalId":15623,"journal":{"name":"Journal of Differential Equations","volume":"417 ","pages":"Pages 164-190"},"PeriodicalIF":2.4000,"publicationDate":"2024-11-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Differential Equations","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022039624007344","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
We establish convergence results related to the operator splitting scheme on the Cauchy problem for the nonlinear Schrödinger equation with rough initial data in , where and . While the Lie approximation is known to converge to the solution u when the initial datum ϕ is sufficiently smooth, the convergence result for rough initial data is open to question. In this paper, for rough initial data , we prove the convergence of the filtered Lie approximation to the solution u in the mass-subcritical range, . Furthermore, we provide a precise convergence result for radial initial data .
期刊介绍:
The Journal of Differential Equations is concerned with the theory and the application of differential equations. The articles published are addressed not only to mathematicians but also to those engineers, physicists, and other scientists for whom differential equations are valuable research tools.
Research Areas Include:
• Mathematical control theory
• Ordinary differential equations
• Partial differential equations
• Stochastic differential equations
• Topological dynamics
• Related topics