Higher torsion-free Auslander-Reiten sequences and the dominant dimension of algebras

IF 0.8 2区 数学 Q2 MATHEMATICS
Tiago Cruz , René Marczinzik
{"title":"Higher torsion-free Auslander-Reiten sequences and the dominant dimension of algebras","authors":"Tiago Cruz ,&nbsp;René Marczinzik","doi":"10.1016/j.jalgebra.2024.11.004","DOIUrl":null,"url":null,"abstract":"<div><div>We generalise a theorem of Tachikawa about reflexive Auslander-Reiten sequences. We apply this to give a new characterisation of the dominant dimension of gendo-symmetric algebras. We also generalise a formula due to Reiten about the dominant dimension of an algebra <em>A</em> and grades of torsion <em>A</em>-modules.</div></div>","PeriodicalId":14888,"journal":{"name":"Journal of Algebra","volume":"665 ","pages":"Pages 282-297"},"PeriodicalIF":0.8000,"publicationDate":"2024-11-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Algebra","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0021869324006033","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

We generalise a theorem of Tachikawa about reflexive Auslander-Reiten sequences. We apply this to give a new characterisation of the dominant dimension of gendo-symmetric algebras. We also generalise a formula due to Reiten about the dominant dimension of an algebra A and grades of torsion A-modules.
更高的无扭 Auslander-Reiten 序列和代数的主维
我们概括了立川关于反身奥斯兰德-莱腾序列的定理。我们以此给出了元对称代数的主维的新特征。我们还推广了赖特恩提出的一个关于代数 A 的主维和扭转 A 模量级数的公式。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Algebra
Journal of Algebra 数学-数学
CiteScore
1.50
自引率
22.20%
发文量
414
审稿时长
2-4 weeks
期刊介绍: The Journal of Algebra is a leading international journal and publishes papers that demonstrate high quality research results in algebra and related computational aspects. Only the very best and most interesting papers are to be considered for publication in the journal. With this in mind, it is important that the contribution offer a substantial result that will have a lasting effect upon the field. The journal also seeks work that presents innovative techniques that offer promising results for future research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信