Measuring the temporal evolution of seagrass Posidonia oceanica coverage using autonomous marine robots and Deep Learning

IF 2.6 3区 地球科学 Q1 MARINE & FRESHWATER BIOLOGY
Francisco Bonin-Font , Antoni Martorell-Torres , Miguel Martin Abadal , Caterina Muntaner-González , Bo Miquel Nordfeldt-Fiol , Yolanda González-Cid , Gabriel Oliver-Codina , Julia Máñez-Crespo , Xesca Reynés , Laura Pereda , Gema Hernan , Fiona Tomás
{"title":"Measuring the temporal evolution of seagrass Posidonia oceanica coverage using autonomous marine robots and Deep Learning","authors":"Francisco Bonin-Font ,&nbsp;Antoni Martorell-Torres ,&nbsp;Miguel Martin Abadal ,&nbsp;Caterina Muntaner-González ,&nbsp;Bo Miquel Nordfeldt-Fiol ,&nbsp;Yolanda González-Cid ,&nbsp;Gabriel Oliver-Codina ,&nbsp;Julia Máñez-Crespo ,&nbsp;Xesca Reynés ,&nbsp;Laura Pereda ,&nbsp;Gema Hernan ,&nbsp;Fiona Tomás","doi":"10.1016/j.ecss.2024.109029","DOIUrl":null,"url":null,"abstract":"<div><div>This paper describes an advanced methodology to monitor and assess, in temporal series, meadows of the seagrass <em>Posidonia oceanica</em>. The process includes, the following steps: (a) exploring marine regions of certain biological interest with Autonomous Underwater Vehicles equipped with cameras looking downwards, (b) taking images continuously during missions of preprogrammed trajectories, (c) processing the images off-line to build colour photomosaics, (d) segmenting seagrass from the background in every image using a pretrained Neural Network, (e) computing the same photomosaics but using the segmented images, and (f) computing automatically the bottom coverage of the seagrass counting the proportion of pixels labelled positively. This procedure avoids the involvement of divers, allows increasing depth, extension and duration of missions and offers 2D maps of the whole inspected areas in a single view, which allows us to get more accurate coverage measurements than those obtained with traditional techniques.</div><div>Experiments have been performed with datasets collected in areas of the Balearic Islands colonized with <em>P. oceanica</em> seagrass and subject to low and high touristic and anchoring pressure during high season, repeating the same transects in consecutive years in order to obtain interannual results. Data obtained with this methodology permit a direct biological qualitative, quantitative and temporal analysis and interpretation, such as the percentage of temporal decline of seagrass coverage in some of the surveyed areas and the annual increase of the meadows extension in others.</div></div>","PeriodicalId":50497,"journal":{"name":"Estuarine Coastal and Shelf Science","volume":"312 ","pages":"Article 109029"},"PeriodicalIF":2.6000,"publicationDate":"2024-11-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Estuarine Coastal and Shelf Science","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0272771424004177","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MARINE & FRESHWATER BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

This paper describes an advanced methodology to monitor and assess, in temporal series, meadows of the seagrass Posidonia oceanica. The process includes, the following steps: (a) exploring marine regions of certain biological interest with Autonomous Underwater Vehicles equipped with cameras looking downwards, (b) taking images continuously during missions of preprogrammed trajectories, (c) processing the images off-line to build colour photomosaics, (d) segmenting seagrass from the background in every image using a pretrained Neural Network, (e) computing the same photomosaics but using the segmented images, and (f) computing automatically the bottom coverage of the seagrass counting the proportion of pixels labelled positively. This procedure avoids the involvement of divers, allows increasing depth, extension and duration of missions and offers 2D maps of the whole inspected areas in a single view, which allows us to get more accurate coverage measurements than those obtained with traditional techniques.
Experiments have been performed with datasets collected in areas of the Balearic Islands colonized with P. oceanica seagrass and subject to low and high touristic and anchoring pressure during high season, repeating the same transects in consecutive years in order to obtain interannual results. Data obtained with this methodology permit a direct biological qualitative, quantitative and temporal analysis and interpretation, such as the percentage of temporal decline of seagrass coverage in some of the surveyed areas and the annual increase of the meadows extension in others.
利用自主海洋机器人和深度学习测量海草 Posidonia oceanica 覆盖率的时间演化
本文介绍了一种按时间序列监测和评估海草 Posidonia oceanica 草甸的先进方法。该过程包括以下步骤(a) 利用配备向下俯视摄像机的自主潜水器探索具有一定生物兴趣的海洋区域,(b) 在按照预先设定的轨迹执行任务期间连续拍摄图像,(c) 离线处理图像以建立彩色照片马赛克,(d) 利用预先训练的神经网络将每张图像中的海草从背景中分割出来,(e) 利用分割后的图像计算相同的照片马赛克,(f) 自动计算海草的底部覆盖范围,计算被标记为阳性的像素比例。该程序避免了潜水员的参与,允许增加深度、延长时间和任务持续时间,并在单一视图中提供整个检查区域的二维地图,这使我们能够获得比传统技术更精确的覆盖范围测量结果。在巴利阿里群岛长有大洋洲海草的地区收集的数据集进行了实验,这些地区在旅游旺季受到的旅游和抛锚压力有大有小,连续几年重复相同的横断面,以获得年际结果。通过这种方法获得的数据可以直接进行生物定性、定量和时间分析和解释,如一些调查地区海草覆盖率的时间性下降百分比,以及其他地区草地扩展的年度增长情况。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
5.60
自引率
7.10%
发文量
374
审稿时长
9 months
期刊介绍: Estuarine, Coastal and Shelf Science is an international multidisciplinary journal devoted to the analysis of saline water phenomena ranging from the outer edge of the continental shelf to the upper limits of the tidal zone. The journal provides a unique forum, unifying the multidisciplinary approaches to the study of the oceanography of estuaries, coastal zones, and continental shelf seas. It features original research papers, review papers and short communications treating such disciplines as zoology, botany, geology, sedimentology, physical oceanography.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信