Topological arrangements in the equatorial timelike circular orbits of regular black holes

IF 2.5 3区 物理与天体物理 Q2 PHYSICS, PARTICLES & FIELDS
M. Umair Shahzad , Nazek Alessa , Aqsa Mehmood , Muhammad Zeshan Ashraf
{"title":"Topological arrangements in the equatorial timelike circular orbits of regular black holes","authors":"M. Umair Shahzad ,&nbsp;Nazek Alessa ,&nbsp;Aqsa Mehmood ,&nbsp;Muhammad Zeshan Ashraf","doi":"10.1016/j.nuclphysb.2024.116749","DOIUrl":null,"url":null,"abstract":"<div><div>The study of topology opens a new frontier in understanding the characteristics of light rings in rotating black holes, as well as the equatorial timelike circular orbits found in non-rotating black holes. This work is devoted to exploring the configurations of circular orbits within the temporal dimension, characterized by the different topology in regular black holes, and determining the corresponding zero points. Using effective potential, we built the vector in the <em>r</em>-<em>θ</em> plane where the zeros of <em>ϕ</em> define location of the timelike circular orbits. This special feature allows one to relate timelike circular orbits with the topology. To each zero point of the vector it is possible to assign a winding number, which defines a topological characteristic for timelike circular orbits. Winding numbers of -1 and +1 are assigned for unstable and stable timelike circular orbits respectively.</div></div>","PeriodicalId":54712,"journal":{"name":"Nuclear Physics B","volume":"1010 ","pages":"Article 116749"},"PeriodicalIF":2.5000,"publicationDate":"2024-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nuclear Physics B","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0550321324003158","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, PARTICLES & FIELDS","Score":null,"Total":0}
引用次数: 0

Abstract

The study of topology opens a new frontier in understanding the characteristics of light rings in rotating black holes, as well as the equatorial timelike circular orbits found in non-rotating black holes. This work is devoted to exploring the configurations of circular orbits within the temporal dimension, characterized by the different topology in regular black holes, and determining the corresponding zero points. Using effective potential, we built the vector in the r-θ plane where the zeros of ϕ define location of the timelike circular orbits. This special feature allows one to relate timelike circular orbits with the topology. To each zero point of the vector it is possible to assign a winding number, which defines a topological characteristic for timelike circular orbits. Winding numbers of -1 and +1 are assigned for unstable and stable timelike circular orbits respectively.
规则黑洞赤道时间性圆轨道的拓扑排列
拓扑学研究为理解旋转黑洞中的光环特征以及非旋转黑洞中的赤道类时间圆轨道开辟了一个新领域。这项工作致力于探索规则黑洞中不同拓扑特征的时间维度内的圆轨道构型,并确定相应的零点。利用有效势能,我们在r-θ平面上建立了矢量,其中j的零点定义了类时间圆轨道的位置。这一特点使我们能够将时间类圆形轨道与拓扑学联系起来。可以为矢量的每个零点分配一个缠绕数,它定义了时间类圆轨道的拓扑特征。不稳定和稳定的类时间圆轨道分别有-1和+1的缠绕数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Nuclear Physics B
Nuclear Physics B 物理-物理:粒子与场物理
CiteScore
5.50
自引率
7.10%
发文量
302
审稿时长
1 months
期刊介绍: Nuclear Physics B focuses on the domain of high energy physics, quantum field theory, statistical systems, and mathematical physics, and includes four main sections: high energy physics - phenomenology, high energy physics - theory, high energy physics - experiment, and quantum field theory, statistical systems, and mathematical physics. The emphasis is on original research papers (Frontiers Articles or Full Length Articles), but Review Articles are also welcome.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信